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Abstract

Efficient storage, processing, and analysis of signal data are significant and interre-

lated tasks. Scenarios such as the Internet of Things (IoT) and Big Data suggest

the necessity of database systems capable of managing and analyzing very large vol-

umes of signal data for information discovery and predictive modeling. Unfortunately,

signals are not first class data types in current database technology. Consequently,

database management systems lack of the proper operators for querying and pro-

cessing such data type. In this dissertation, a formal data model for digital signals

is proposed. This model provides a theoretical framework for the manipulation and

analysis of signals in a database environment, merging the tasks of data management

and data processing into a single data model. This data model consists of an abstract

representation of signal data and the required set of operations for its manipulation.

It is shown that this formal data model can easily be integrated with current database

systems by expressing its operations using SQL statements. Moreover, using the med-

ical field as motivation, we provide evidence that this formal data model can capture

common ECG signal processing tasks needed for ECG analysis.

A new SQL clause is proposed for the implementation of sliding windows in Re-

lational Database Management Systems (RDBMS), in the context of signal process-

ing. This new clause can improve to a great extent the applicability of RDBMS for

management and processing signal data. Furthermore, this dissertation provides a

theoretical proof that shows that our proposed data model is capable of expressing

any signal transformation from a finite digital signal to another finite digital signal.

Keywords: signal data management, signal data processing, signal algebra, formal

data model, ECG signals
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Resumen

El almacenamiento, procesamiento y análisis eficiente de datos de señales, son tareas

interrelacionadas y de gran relevancia en la actualidad. El escenario que describe

el Internet de las Cosas y la realidad del Big Data, sugieren la necesidad de crear

sistemas de bases de datos capaces de administrar y analizar grandes volúmenes de

datos de tipo señal, para el descubrimiento de información y el modelado predictivo.

Desafortunadamente, las señales no se consideran datos de “primera clase” en la tec-

noloǵıa actual de bases de datos. En consecuencia, los gestores de bases de datos

carecen de los operadores necesarios para la realización de consultas y para la eje-

cución de procesamiento sobre señales. En este trabajo de investigación, se propone

un modelo formal para la representación de señales digitales que proporciona los fun-

damentos teóricos para la manipulación y análisis de señales almacenadas en bases

de datos. Este modelo brinda sustento teórico tanto a la parte de administracion de

datos de tipo señal, como para la parte de procesamiento de señales. La propuesta

del modelo consiste en una representación abstracta de señales, aśı como de un con-

junto de operaciones para la expresión de algoritmos de procesamiento y análisis de

señales digitales. Se demuestra que este modelo puede ser fácilmente implementado

en los gestores de bases de datos actuales, ya que las operaciones del modelo pueden

ser traducidas, de manera directa, a consultas SQL. Además, usando el campo de

la medicina como motivación, se expresan las técnicas de procesamiento de señales

de Electrocardiogramas (ECG) utilizadas en el análisis de estas señales, a través el

modelo propuesto.

De igual manera, se propone una nueva cláusula SQL para la implementación de

ventanas deslizantes en Sistemas Gestores de Bases de Datos Relacionales (SGBDR),

aplicadas al procesamiento de señales. Esta nueva cláusula permite mejorar en gran



vii

medida la aplicabilidad de los SGBDR en el manejo y procesamiento de datos de tipo

señal. Aśı mismo, en este trabajo de investigación se demuestra teóricamente que el

modelo formal de datos propuesto es capaz de expresar cualquier transformación de

una señal digital finita a otra señal digital finita.

Palabras clave: manejo de datos de señales, procesamiento de datos de señales,

algebra de señales, modelo formal de datos, señales ECG
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Chapter 1

Introduction

Digital signals are everywhere and play a key role in our daily life. For instance,

voice, pictures, and video are all translated into digital signals in order to be stored,

transmitted, recorded or displayed. A signal can be represented as a function of an

independent variable, usually time, space or both. A sound signal, for instance, rep-

resents the air’s vibration as a function of time at a particular point in the space [59].

Different types of signals of diverse nature are generated. Usually, signals are trans-

formed into an electrical equivalent signal in order to be manipulated.

Electrical equivalent signals are obtained by using sensors and a sampling process.

Such signals carry information and they require to be processed and analyzed in order

to extract such information. The processing and analysis methods will depend on the

nature of the signals. For instance, the analysis of human biomedical signals requires

the involvement of an expert, usually a physician. The analysis of biomedical signals

have been practiced in medical centers for several decades as a means for prevention

and diagnostic of diseases. One example of such type of signals are Electrocardiograms

(ECG).

ECG are records of the electrical activity (voltage) generated directly by the heart

muscle cells, plotted against the time. They represent sequences of depolarization and

polarization of the atria and ventricles. These records are obtained by a non-invasive

procedure (Electrocardiography) consisting on positioning electrodes on the body’s

surface of a patient, specifically on the chest and limbs. The interface between an

ECG signal source (the patient) and any acquisition device is a system of two or more
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electrodes from which a differential voltage is recorded.

ECG signals contain information of can be used to diagnose Cardiovascular Dis-

eases (CVD) [73]. This information can be extracted by analyzing ECG signals

recorded simultaneously at different points of the human body and, afterwards, it

can be used to support the diagnosis of CVD. CVDs are the first cause of deaths

worldwide, contributing to nearly one third of global mortality. For this reason,

the World Health Organization (WHO) states that the development of methods for

monitoring trends of morbidity, mortality, and risk factors for developing CVD is a

research priority for the prevention and control of CVD [65].

The analysis of ECG data as an aid for diagnosing CVD is a common practice in

medical centers. Large volumes of ECG data are generated everyday, not only due

to their usefulness but also because they are relatively easy to obtain. Keeping a

data bank of the ECG data generated by hospitals from a relative large community

requires important storage and data management resources. Moreover, the analysis

of such data banks entails specific computation tools suitable for time evolving data

such as ECG signals.

1.1 Motivation

Current vendor-supplied ECG data management systems in the market are quite

limited in terms of analysis and querying. They usually support only searching and

viewing the ECG data of an specific patient [69]. Moreover, large amounts of ECG

data are discarded at hospitals, mostly because of the lack of effective tools to create

databases where this kind of data can be not only stored, but also, efficiently queried

and properly analyzed.

Global health database management systems capable of storing, querying, and

analyzing very large volumes ECG data sets are needed to generate critical informa-
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tion for designing public policies to prevent and control cardiovascular diseases, the

number one cause of death globally [65]. This kind of systems could also serve as a

decision support tool for diagnosing these diseases and for monitoring the morbidity

of a population. Moreover, they can be used as a rich validation platform for new

algorithms. However, before any attempt of serious implementations, such systems

require new approaches for modeling signal data that can take advantage of current

database technologies.

The demand for massive data analysis is not exclusive of the medical domain.

The advent of mobile multi-sensor computer platforms and the ease of network con-

nectivity have increased the collection and storage of signal data of diverse nature.

Scenarios like the Internet of Things (IoT) suggests a continuous data flow from ob-

jects, devices and things as well as an unprecedented demand for data storage and

analysis. Traditionally, the demand of these two tasks had been satisfied in separate

ways. This is, signal data storage is usually implemented using a particular comput-

ing platform (i.e., the file system) and signal data analysis using different one (i.e.,

special purpose application software). This kind of approach is adequate for small

size data sets, but it is not adequate for large data sets. Specially, when the amount

of processed data exceeds the size of the memory available.

A formal mathematical representation of signals as a type of data is lacking. We

can find in the research literature numerous algorithms for signal data processing

and classification. For instance, with the purpose of automating the analysis of ECG

signal data. These algorithms have been developed using techniques taken from

diverse scientific disciplines such as time-series analysis, signal processing, and even

image processing. Consequently, the representation of such algorithms can be as

varied as the assortment of disciplines involved. Therefore, a standard mathematical

expression for such algorithms can facilitate the process of translating mathematical
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equations into lines of code of a programming language. Moreover, it can enable the

application of machine dependent and machine independent optimization techniques

in the signal data processing algorithms.

Despite the widespread generation and utilization of signal data, they are not

a first class data type in Relational Database Management Systems (RDBMS). Al-

though RDBMS are capable of storing digital signals (e.g., by using arrays), they

lack of suitable operators for querying and processing this type of data. For instance,

the operation of digital signal filtering, a very common signal processing operation,

requires an sliding window operation between two sequences. This operation cannot

be implemented by the standard operators in SQL, even though arrays are part of

the SQL standard since 1999 [16]. The absence of operators for signal processing

can be due to the apparent incompatible differences between scalar data (for which

the relational model has been widely used as formal data model) and signal data.

Consequently, a formal model for signal data is needed in order to provide this data

type with a logical data structure and data operators in a database environment.

It is clear then, that in order to elevate digital signals to the category of “first

class citizen” in RDBMS’, it becomes necessary to create a new formal data model.

This new data model should be capable of providing a suitable representation of

signal data as well as being capable of expressing querying and processing algorithms.

Particularly for ECG data, a formal model will simplify the implementation of ECG

analysis algorithms in a RDBMS. Moreover, such formal data model can serve as a

bridge between the multitude of signal analysis algorithms proposed in the literature

and their expansion and implementation in large signal data repositories.
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1.2 Main Contributions of this Dissertation

In this dissertation, we propose a formal model for the representation and processing

of signal data in a database environment. The highlights of our proposal can be

summarized as follows.

• A new model that provides a formal representation for signal data is introduced.

This formal representation is suitable for its usage and implementation in cur-

rent relational database technology since it is based on set theory. Moreover,

we describe the alternatives for storing a signal in a RDBMS.

• In addition to the data abstraction, the proposed model defines a set of opera-

tions needed to express signal data processing and analysis.

• We present a survey of the main approaches for ECG signal data analysis and

provide detailed descriptions of the processing techniques involved in such tasks.

We classify signal analysis algorithms in three categories, namely, signal en-

hancement, feature extraction, and pattern matching.

• We provide evidence of the expressiveness of the model by using it to formally

describe some of the most common techniques used in ECG signal data analysis.

• We provide a theoretical proof that the proposed model is capable of expressing

any transformation from a finite digital signal into another finite digital signal.

• We describe how the proposed model can be implemented in a RDBMS by

translating the set of operations into SQL statements with the aid of User

Defined Functions.

• We propose a new SQL clause for the implementation of sliding windows in

RDBMS, in the context of signal processing.
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1.3 Organization of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 describes the funda-

mental techniques of signal processing. We also present a description of the processing

techniques utilized in ECG analysis tasks, as well as a survey of the major algorithmic

approaches for such tasks. Previous research work on algebras for digital signals and

images is also presented at that chapter, as well as research opportunities. Chapter 3

explores the various forms of mathematical representations of digital signals and it

relates these representations with the physical design of database systems. Moreover,

we follow the process of a new database’s design to describe the logical design of a

basic database of ECG signals. In Chapter 4, we propose the formal model of signal

data by defining the algebraic structures and the operations needed the expression of

signal data analysis algorithms. In Chapter 5, we express commonly used algorithms

for processing signal data using the proposed formal model, as well as a proof of

the sufficiency of the model. In Chapter 6, the set of operations defined in the pro-

posed model are translated into SQL statements. Furthermore, a new SQL clause,

named SLIDING, is proposed for implementation of signal processing sliding windows

in RDBMS. Finally, Chapter 7 summarizes the contributions of this dissertation and

gives an outlook to future work.
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Chapter 2

Related Work

Signal processing involves the representation and transformation of signals. Mean-

while, signal analysis is concerned with the extraction of information from signals.

In this chapter, we describe the fundamental techniques commonly used in signal

processing. Moreover, we describe the processing techniques utilized in ECG analysis

tasks, as well as the major algorithmic approaches for such tasks. Previous research

work on algebras for digital signals and images is also reviewed. At the end of this

chapter, we identify some research opportunities related to signal processing, signal

data analysis, and data management.

Diverse mathematical structures can be used to represent signals and their pro-

cessing algorithms. Likewise, in this work, we will be using different equivalent math-

ematical representations. For clarity and to avoid inaccuracies in the interpretation

of the mathematical objects, in Table 2.1, we show the list of mathematical symbols

and notation used in this thesis.
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Symbol Description

Z The set of integers numbers
R The set of real numbers

ZN The set {0, 1, . . . , N − 1}
x A sequence of elements or discrete function
x(t) A continuous function x evaluated at the real value t
x[i] A discrete function x evaluated at the integer value i
x ⋆ y Discrete convolution between two sequences
X A discrete function represented as a set of pairs (i, x[i])
HHH A kernel structure

Table 2.1: List of mathematical symbols and notation used in this dissertation.

The motivation of this work is the study of the representation of ECG signals and

the operations involved in processing and analysis algorithms. For this reason, we

start this chapter with a description of the basics of ECG signals.

2.1 Electrocardiogram

The human body is composed of physiological processes. These processes involve

complex phenomena and they are often accompanied or manifested themselves as

signals that reflect the nature of such activities. The signals can be of different

nature such as biochemical, electrical (voltage or current) and physical (pressure

or temperature). These signals reflect properties of their associated systems, and

their extraction has been found to be very helpful in identifying various pathological

conditions. One of such signals are electrocardiograms.

Electrocardiograms (ECG) are records of an electrical signal reflecting the activity

of the heart. The electric signal’s (voltage) variations measured by the electrodes are

caused by the action of the excitable cardiac cells as they make a heart contraction.

These signals are obtained by a non-invasive procedure (Electrocardiography) con-
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sisting on positioning electrodes on the body’s surface of a patient, specifically on

chest and limbs.

The electrodes are placed, in such a manner, that the spatiotemporal variations

of the cardiac electrical field are sufficiently well-captured [11]. For an ECG record-

ing, the difference in voltage between a pair of electrodes is referred to as a lead.

Figure 2.1 illustrates the positions of the electrodes on the chest of a patient corre-

sponding to leads V1...V6. These leads are also known as precordial leads. Additional

electrodes are placed on the right arm, the left arm, the right leg and the left leg,

denoted as VRA, VLA, VRL and VLL, respectively. The “central terminal” (VWCT ) is a

reference voltage and is the average of the voltages VRA, VLA and VLL as expressed

by Equation (2.1). Precordial leads are referenced to the central terminal.

VWCT =
VRA + VLA + VLL

3
. (2.1)

Figure 2.1: Electrodes positions on chest of a patient. Adapted from [11].
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A typical ECG record consists of multiple-lead configurations which includes

unipolar or bipolar leads, or both. A unipolar lead manifests the voltage variation

of a single electrode and the central terminal, such as precordial leads. A bipolar

lead indicates the voltage difference between two electrodes, for instance, the voltage

between the left and right arm.

The standard 12-lead ECG is the most widely used ECG lead system in clinical

routine [93]. The 12 leads are the six precordial leads plus the leads I, II, III, aV R,

aV L, and aV F which are obtained as follows.

I = VLA − VRA, (2.2)

II = VLL − VRA, (2.3)

III = VLL − VLA, (2.4)

aV R = VRA −
VLA + VLL

2
, (2.5)

aV L = VLA −
VRA + VLL

2
, (2.6)

aV F = VLL −
VLA + VRA

2
, (2.7)

These 12 signals constitute the standard 12-lead ECG. Nevertheless, the number

of leads on ECG test can differ from this number, depending on the nature of the

test (e.g., ambulatory monitoring), suspected cardiopathy of the patient, equipment

availability, etc. [11]

2.2 Signal Processing Techniques

For several decades, there has been a significant effort to develop methods for process-

ing and analyzing digital signals. The term digital signal processing is used here in

a broad sense, comprising all algorithms that transform an input signal into another
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signal. Some of the most commonly used techniques for processing digital signals are

Linear Filtering, Wavelet Transforms, Polynomial Interpolation, Mathematical Mor-

phology, and Discrete Fourier Transform. In the following subsections, we describe

the fundamental digital signal processing techniques. Moreover, since this work was

motivated by ECG signals, we provide a succinct description of the major approaches

for the analysis of ECG signals from an algorithmic point of view. These approaches

are discriminated by their purpose in the ECG analysis process.

2.2.1 Linear Filtering

Linear filters are an important class of digital signal processing systems. Besides

filtering out undesired bands of frequency (noise), a linear digital filter can also be used

for computing other functions such as integration, differentiation, and estimation [35].

Linear filters are modeled as Linear Time-Invariant (LTI) systems (readers who are

unfamiliar with linear digital signal processing are referred to the work of Oppenheim

et al. [63] for a complete description). An LTI system is completely characterized by

a sequence, h, representing the impulse response of the system.

Linear filters can be classified based on the finiteness of the sequence h. Hence, we

have two kind of filters: Finite Impulse Response (FIR) filters and Infinite Impulse

Response (IIR) filters. FIR filters are commonly used in ECG signal processing

techniques such as matched and adaptive filtering. If causality (the output depends

only on past and current inputs) is assumed, a FIR filter is defined as follows.

y[i] =

M−1∑

k=0

h[k]x[i − k] (2.8)

This operation is called convolution and it is also denoted by y = h ⋆ x. Here,

the sequence h is finite with length M . The output at any value i is obtained by
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computing a weighted linear combination of the input samples x[i], x[i − 1], . . . , and

x[i −M + 1]. The weights are provided by the sequence h. This computation can

be seen as an sliding window that considers M elements of x at each position. If

the input sequence x is of length N , then the output sequence y will be of length

N + M − 1. Note that computing Equation (2.8) will eventually need elements not

defined in x; such as x[−1]. To avoid this, the length of x can be extended at the

borders by padding zeros in order to be able to compute y. In the case of ECG

signals, M is usually much smaller than N . Therefore, in practice, we could truncate

the output sequence such that its length will be N , the same as the input sequence.

In IIR filters, h is an infinite sequence. The convolution for an IIR filter is defined

by Equation (2.9). The implementation of this expression would require an infinite

number of computations for each element of the output sequence, which is unrealistic.

In practice, an alternative method was derived from the analog counterpart of the IIR.

In this method, besides the input sequence, the elements of the output sequence are

also utilized to compute the output sequence. This recursive computation is defined

by Equation (2.10).

y[i] =

∞∑

k=0

h[k]x[i− k] (2.9)

y[i] =

L∑

k=1

ha[k]y[i− k] +

M∑

k=0

hb[k]x[i − k] (2.10)

Here, two sequences define the operation, one sequence ha weights previous out-

puts values and a sequence hb weights previous input values. Any output value is

computed as a function of the previous M values of the input sequence x and the

L previous values of the output sequence. For this reason, IIR filters are also called

recursive filters. By contrast, FIR filters are usually called nonrecursive filters be-
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cause only previous values of the input sequence are needed to compute the output

sequence, as expressed by Equation (2.8).

Furthermore, though in theory the impulse response sequence of an IIR filter

lasts forever, in practice, this sequence is finite. It decays exponentially and it could

eventually sunk below the quantization step or the inherent noise of the signals [40].

Therefore, we can say that an implementation of IIR filter has an effective finite

impulse response. In other words, we can implement an IIR filter with a FIR filter,

if we accept the negligible error that comes from truncating the impulse response

sequence.

2.2.2 Wavelet Transform

The wavelet transform is a linear operation that decomposes a signal into basis func-

tions. The basis functions are obtained from a prototype wavelet, ψ, by means of

dilations and contractions (scaling) as well as time shifts. If the wavelet prototype

is contracted, the wavelet transform can provide information of the finer details of

a signal. In the same way, if the wavelet prototype is dilated, a global view of the

analyzed signal can be obtained. A discrete wavelet prototype scaled by a > 0, ψa,

is defined in Equation (2.11).

ψa[i] =
1√
a
ψ

[
i

a

]

(2.11)

The prototype wavelet can be thought as a linear filter. It can be characterized

as a sequence representing the impulse response of the linear filter, as described in

the previous section. Therefore, the discrete wavelet transform can be computed

using linear filtering and scaling. The linear filtering is accomplished by applying the

convolution operation. The scaling is obtained by subsampling [74]. In the work of
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Mallat [50], the expressions for the coefficients of the discrete wavelet transform are

defined. For j > 0, the approximation coefficients aj and detail coefficients dj of the

discrete wavelet transform with scale j are given by Equations (2.12) and (2.13).

aj+1[i] =
∞∑

k=−∞

aj [k]h[k − 2i] (2.12)

dj+1[i] =

∞∑

k=−∞

aj[k]g[k − 2i] (2.13)

The term a0 represents the original signal x. The sequence h is the impulse

response of the linear filter representing the scaled wavelet. On the other hand, the

sequence g represents a linear filter that computes the details of the signal that are

removed by the filter h. In a given application, the detail coefficients dj are required

when the lower scales of the wavelet transforms must be reconstructed from higher

scales. The flow of this computation is illustrated in Figure 2.2, where Filter A and

Filter B correspond to the convolution operation using the sequence h and sequence

g, respectively.

a
0

a
1

d
1

d
2

a
3

d
3

a
2

. . .

FIR Filter B

FIR Filter A

FIR Filter A

FIR Filter B FIR Filter A

FIR Filter B

Figure 2.2: Discrete Wavelet Transform using Digital Filters.
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2.2.3 Polynomial Interpolation

The task of estimating values between signal samples (interpolation) can be ap-

proached by using a parameterized polynomial model of the signals named splines.

Splines can be represented by linear combinations of a special class of piecewise poly-

nomials named B-splines. The polynomial segments are smoothly connected together

at uniformly spaced samples or knots, in such a way that the interpolation func-

tion and all derivatives up to order (n− 1) are continuous at the knots. Splines are

characterized in terms of a B-spline expansion [96] as expressed by Equation (2.14).

s(t) =
∞∑

k=−∞

c[k]βm(t− k), (2.14)

where c is a sequence of coefficients and βm is a B-spline of degree m.

B-splines are symmetrical functions obtained by a (m + 1)-fold convolution of a

rectangular pulse β0, which is defined in Equation (2.15). In Figure 2.3, the shapes

of the b-splines up to degree 3 are shown.

βm(t) = β0 ⋆ β0 ⋆ β0 ⋆ . . . ⋆ β0

︸ ︷︷ ︸

(m+1) times

, where

β0(t) =







1, −1
2
< t < 1

2
1
2
, |t| = 1

2

0, otherwise

(2.15)

Let us consider the spline interpolation problem where the coefficients are deter-

mined such that the function goes through the data points exactly, that is c[k] = s[k].

Given a sequence s, we can determine the coefficients c of the B-spline model ex-

pressed by the Equation (2.14), in such a way that there is a perfect fit at the indices,

as in the following expression.
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Figure 2.3: B-splines of degree 0 to 3

∞∑

l=−∞

y[l]βm(t− l)|t=k = s[k] (2.16)

In the discrete case, a B-spline kernel, bm
a , must be defined. This kernel is basically

a sequence obtained by sampling a B-spline of degree m scaled by a, that is, bma [k] =

βm(t/a)|t=k. Using this kernel, we can express Equation (2.16) as s = bm
1 ⋆ c, whose

solution can be found by inverse filtering as c = (bm
1 )−1 ⋆ s, where (bm

1 )−1 is the

sequence that characterizes the inverse convolution and it can be implemented by

using the convolution operation [96].
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2.2.4 Mathematical Morphology

Mathematical Morphology (MM) was developed by Matheron and Serra [54, 83] in

the petrography and mineralogy fields. It has been a major research topic in digital

image analysis as a nonlinear method for shape-based processing. Moreover, MM

operators have also been successfully applied to one dimensional signal processing

tasks such as biomedical signal processing [78, 91, 98].

The basic MM operations are erosion (⊖) and dilation (⊕). These operations

make use of a discrete structure. In the case of digital signals, the discrete structure

is a sequence of elements known as the Structuring Element (SE). The SE interacts

with an input sequence through the MM operations to extract relevant shapes. An

specific SE has to be designed based on the particular shapes that are to be extracted

for a particular application.

Let x be an input sequence with length N and b a structuring element with length

M , where N > M . The erosion and dilation operations for signal analysis [10] are

defined by Equation (2.17) and Equation (2.18), respectively.

(x⊖ b)[i] = min
0≤m<M

(x[i+m]− b[m]) for 0 ≤ i ≤ N − 1 (2.17)

(x⊕ b)[i] = max
i−M+1≤m≤i

(x[m] + b[i−m]) for 0 ≤ i ≤ N − 1 (2.18)

Once again, some values not defined in the input signal x are required for com-

puting the morphology operations. Usually, when these operators are implemented,

padding techniques are used to deal with undefined values at the borders of the signal.

The basic operations, erosion and dilation, can be combined to create composed

operations such as opening (◦) and closing (•). Opening performs dilation on a

sequence eroded by the same SE, closing, on the other hand, performs erosion on a
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previously dilated sequence.

Opening: x ◦ b = (x⊖ b)⊕ b (2.19)

Closing: x • b = (x⊕ b)⊖ b (2.20)

2.2.5 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a sequence to sequence transformation.

The DFT is widely used in both, signal processing and time series data mining. Here,

we consider the real version of the DFT which takes a real valued input signal and

transforms it into two real valued sequences, representing the real and the imaginary

parts of the DFT. The real DFT considers only operations between real numbers. The

sequences involved in this transformation are the input sequence x of length N and

the two output sequences, X1 and X0. The elements of output signal X1 represent the

cosine waves amplitudes while the elements of X0 represent the sine wave amplitudes.

The standard formulation of the real version of the DFT is given by the Equations

(2.21) and (2.22) [21].

X1[n] =
N−1∑

k=0

x[k] cos(2πnk/N), (2.21)

where n ∈ ZN1
with

N1 =

{
N
2
, if N is even,

N−1
2
, if N is odd.

X0[m] =

N−1∑

k=0

x[k] sin(2πmk/N), (2.22)

where m ∈ ZN0
− {0} with

N0 =

{
N
2
− 1, if N is even,

N−1
2
, if N is odd.
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Let us stress that although X1 and X0 represent the real and imaginary part of

complex values, there are not complex operations involved in this version of the

DFT.

The signal processing techniques described above present a common characteristic.

All of them require an aggregation operation (sum, maximum, minimum, etc.) over

a range of indices or positions. This means that all these techniques, linear and

nonlinear, behave as a moving or sliding window. This remark is very important

because it means that if we are able to formalize an sliding window, we will be able

to create a formal model for all these processing operations. The formalization of

this and other signal operations is addressed in the definition of the signal algebra in

Chapter 4.

2.3 ECG Analysis Tasks

We identify three main tasks for the analysis of digital ECG signals, namely signal

enhancement, feature extraction, and pattern matching (pattern detection and classi-

fication). The purpose of each task is described below. We also describe the major

approaches that have been proposed in the literature for each task.

2.3.1 Signal Enhancement

Digital signals are susceptible to the addition of unwanted signals (noise) from differ-

ent sources and characteristics. Although noise can be reduced using hardware, it is

impossible to remove all of it. A corrupted signal can affect the outcome of a signal

analysis process. Usually, the first step of signal analysis is the removal of distortion

in order to obtain an uncorrupted signal suitable for analysis [26].

The task of noise removal from ECG signals requires an algorithm to filter out
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disturbances with the least possible loss of clinical information. In other words, the

morphological components of an ECG signal must get the least possible distortion

from the filtering process. The ECG components are the waves, segments, and in-

tervals illustrated in Figure 2.4. The range of frequencies of the ECG components is

0.005-150Hz. Commonly, the noise presents a wider range of frequencies compared

to the ECG components. In particular, the low frequency noise (below 1Hz), can be

difficult to remove from a signal because it can be in the same range of frequencies

of low frequency ECG components such as the ST segment [32]. The low frequency

noise in an ECG is usually caused by distance changes between electrode and the

surface body due to perspiration, breathing, movements of the patient during the

test, or poor electrode contact. This problem is commonly known as baseline wander.

This kind of noise is illustrated in Figure 2.5.

PR
Interval

RR Interval
QRS 

R 

S

Q

TP
U 

SegmentSegment

Complex

PR ST

QT Interval

Figure 2.4: ECG waves, segments, and intervals.

Several techniques have been proposed for baseline wander removal. Some ap-

proaches make use of linear filtering to address the correction of this problem [4, 9,

13, 32, 87]. In such approaches, digital filters are designed to remove specific bands

of frequency that match the frequencies of the distortion. Other methods have been

proposed making use of polynomial interpolation. In these methods, it is common
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Figure 2.5: a) ECG signal b) ECG signal with baseline wander. Note that the
frequency of this noise is below 1 Hz

the utilization of cubic splines [5, 57]. Cubic splines are used to estimate the noise

with samples taken from PR segments, then, the estimated noise is simply subtracted

from the ECG signal. Mathematical morphology approaches have been also used for

baseline wander removal in [10, 61]. In the work of Sun et al. [98], a modified ver-

sion of the MM operators is applied to ECG signals for baseline correction and noise

suppression resulting in low distortion rate of ECG components but sacrificing noise

reduction rate compared to other approaches.

Another source of noise affecting ECG signals is the one introduced by AC power-

line. This kind of noise appears with a frequency of 50Hz or 60Hz. Power-Line

Interference (PLI) is an electromagnetic noise added to ECG signals due to the AC

power-lines. Some proposals have approached this problem by using linear filtering [4,

70]. They utilize a band-stop filter (also known as notch filter) to reject the specific

frequency of the PLI. More flexible methods for PLI suppression have been proposed
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by using adaptive linear filtering [52, 94]. This technique requires the modification of

the filter parameters (coefficients) over time. A PLI solution involving ECG signal

segmentation and linear filtering is known as the subtraction method [43, 44]. In this

method, ECG signals are divided in linear and non-linear segments. Linear segments

are moving-averaged by using a linear filter to remove interference. The interference

is stored and further subtracted from the signal wherever non-linear segments are

encountered. Some other approaches for PLI correction involves wavelets [3] and MM

operators [8]. In the work of Agante and Marques de Sa [3], a wavelet approach

is used for PLI correction obtaining noise reduction with only minor changes of the

ECG waveforms. The work of Bhateja et al. [8] combines mathematical morphology,

wavelets, and linear filters to address the problem of spikes or impulse noise and PLI.

This approach starts by applying MM operators on the sequence of detail coefficients

from the wavelet transform to suppress spikes, then, it applies linear filtering to the

reconstructed ECG signal to remove PLI.

2.3.2 Feature Extraction

Feature extraction consists of extracting a set of characteristics from an ECG signal

that captures the essence of the signal, particularly those characteristics that exhibit

diagnostic properties. Most of the significant diagnostic information in an ECG signal

is given by specific morphological and timing features of the ECG waves (as illustrated

in Figure 2.4). The feature extraction process is accomplished by measuring time-

related characteristics of the ECG components such as intervals and wave positions,

and also, the amplitudes of the waves. In particular, it is of paramount importance

the accurate location of the so-called fiducial points. These points determine the

beginning and the end of P and T waves, the QRS complex, and the location of the

R peaks [26]. The process of locating fiducial points is usually called delineation.
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The QRS complex is the most distinguishable waveform of the ECG signal. The

time interval of consecutive R points is used to determine the frequency of the car-

diac activity. Moreover, the R point is usually taken as a reference for the delineation

process. The process of locating the R point is usually known as QRS complex de-

tection. QRS complex detection methods present a two-stage (preprocessing and

decision) algorithm structure that matches most of the detectors. This structure is

described by the block diagram in Figure 2.6. The preprocessing or feature enhance-

ment stage is based on linear filtering and nonlinear transformation. The decision

stage is subdivided into peak detection and decision logic. The preprocessing stage

is where the original ECG signal is modified to emphasize some features associated

to the QRS complex. At the same time, noise and artifacts are suppressed. On the

decision stage, the individual R points are detected, usually by means of amplitude

thresholds and a decision logic. R points detectors usually include adaptability to

match with the changes of the signal. A postprocessing stage is often necessary for

the exact determination of the temporal location of each QRS complex [39].

A broad variety of algorithms has been proposed for the QRS complex detection.

Kohler et al. [39] presented an in-depth revision and comparison of QRS complex

detection algorithms that use different preprocessing approaches. The linear filtering

step of the QRS complex detection structure have been mostly accomplished by using

convolution [60, 67], signal derivatives [31, 62], and matched filters [14, 45, 77]. All of

these techniques are equivalent to linear filtering and they can be computed by using

convolution [35, 39].

The wavelet transform has been widely used in QRS complex detection and de-

lineation. Most of the wavelet approaches [1, 34, 37, 53] are based on Mallat and

Hwang’s work [51], where they found a relationship between modulus maxima and

zero crossings of the wavelet transform of a signal and their the sharp edges.
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The nonlinear filtering transformations shown in the block diagram of Figure 2.6,

can be accomplished in many possible ways. Such operations are used, for example,

when all elements of a signal must be transformed to positive values or when a relative

suppression of small values and a slight smoothing of the peaks is required [39]. A

simple nonlinear operation can be obtained by squaring each sample of the ECG

signal [67], as given by Equation (2.23), where x is the input signal and y the output

signal, respectively.

y[i] = (x[i])2 (2.23)

Linear
Filtering

Nonlinear
Filtering

Decision
Peak
Detection

Preprocessing Stage Decision Stage

ECG

x[n]

Sequence
of positions

y[n]

Figure 2.6: Algorithm structure of a QRS detector.Adapted from [39, 88].

Nonlinear transformations usually operate on some approximation of the deriva-

tive of the ECG signal. On digital signals, the derivative is computed using an sliding

window operation. For instance, the Multiplication of Backward Difference (MOBD)

algorithm [92] uses a nonlinear transformation defined as

y[i] =
M−1∏

k=0

|x[i− k]− x[i− k − 1]| (2.24)

The MOBD algorithm, as expressed by Equation (2.24), uses an sliding window

of length 2. The product of the absolute values of the difference of the elements of
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each window must be computed to obtain the transformation.

In the work of Okada [62], another example of an sliding window-based nonlinear

transformation is used. A transformed signal y2 is obtained by squaring the difference

between a linear-filtered signal y1 and its moving average, centered at i, using a

window of length 2M + 1, as expressed by Equation (2.25).

y2[i] =

(

y1[i]−
1

2M + 1

M∑

k=−M

y1[i+ k]

)2

(2.25)

Mathematical morphology is also a window-based nonlinear transformation tech-

nique for signal analysis. This shape-based processing method has also been effectively

used for QRS complex detection [95, 99, 100]. These approaches make use of differ-

ent structuring elements for peaks and valleys detection. Afterwards, algorithmic

approaches similar to the one shown in Figure 2.6 are usually applied.

Regarding ECG delineation algorithms, they usually define temporal search win-

dows based on a QRS location, then, the characteristic features of each ECG wave

are enhanced to facilitate their location and demarcation [53]. Some approaches for

delineation [42, 56, 89] share the same algorithmic structure of QRS complex detec-

tion, as shown in Figure 2.6. However, for most of the approaches, there is not a

clear rule for finding waves boundaries although the techniques utilized are basically

the same techniques used in QRS detection algorithms. We can find in the literature

diverse approaches to delineate ECG waves based on signal transformations such as

adaptive and matched filtering [38, 86], mathematical morphology [91] and wavelet

transforms [79].



26

2.3.3 Pattern Matching

Automated ECG pattern matching has been of great importance for real-time detec-

tion of cardiovascular diseases. The goal of ECG beat matching is to discriminate

each beat and to classify it into one of a possible number of diagnostic classes [26].

Each segmented beat is defined based on the previously described delineation process.

In their simplest form, ECG beat classification algorithms only use a two-class set,

namely, normal and abnormal beat. More advanced algorithms are able to distinguish

among a family of possible classes.

In addition to the features provided by delineation algorithms, some ECG beat

classification approaches increase their accuracy by deriving a set of heuristic features

that, for example, describe the area, polarity, and slopes of the waves. Furthermore,

more robust approaches make use of the coefficients that result from the correlation of

each beat with either a set of predefined orthonormal basis functions or a set of beat

templates [88]. The classification task can be performed using techniques developed

for similarity search on time series data. Similarity search requires a function to

effectively measure the similarity (or dissimilarity) of a ECG beat and a template

or pattern. Perhaps the most used of such functions is the L2 Norm or Euclidean

distance [25]. This kind of approach for ECG beat classification is based on the

approximate matching of the beat’s shape to a class template. The research literature

reports high accuracy for ECG beat classification using k-Nearest Neighbor (k-NN)

search queries [33].

The implementation Artificial Intelligence (AI) methods, especially neural net-

works, have become an important trend for recognition and classification of CVD [6,

41, 66]. A typical heartbeat recognition system based on neural network classifiers

usually builds (trains) different models, exploiting either different classifier network
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structures or different preprocessing methods of the data, and then the best one is

chosen, while the rest are discarded [11]. Many other techniques have been used for

ECG beat classification such as linear filtering [2], frequency domain analysis [58],

and wavelet transforms [82].

2.4 Signal Algebra

The idea of defining an algebra for digital signals has been approached in different

areas of signal processing. Such approaches have been made considering both, one

and two dimensional (image) digital signals. An algebra can be considered as a set of

objects and a collection of operations over those objects [55]. In our case, an algebra

for digital signals is basically a formal representation of signals and their operations,

providing a formal expression of processing and analysis algorithms.

In two dimensional signals, probably the most complete study on this matter

is the work of Ritter et al. [76]. In that work, an algebra of images is proposed.

The fundamental object (image) is represented using a set of pairs, where each pair

consists of a coordinate and a value element. Image transformations are expressed

by a set of operations of different types. Another approach is the work of D’Alotto

et al. [12]. They propose an algebraic framework for image parallel processing. Here,

the images are represented by bounded matrices. The algorithms are expressed using

block diagrams. The processing algorithms considered are basically image to image

transformations.

In the case of one dimensional digital signals, the work of Püschel and Moura [71]

addresses the development of an algebraic signal processing theory, which is a gen-

eralization of linear signal processing. In that work, the signals are represented as

elements of vector spaces. This theory merges the well studied areas of linear sig-

nal processing and abstract algebra (theory of groups, rings, fields, etc.). Another
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interesting approach is presented in the work of Paredes et al. [68]. They focus on

one dimensional signals represented as column arrays. Here again, the concepts of

abstract algebra are used to investigate the properties of some linear operations and

its relation to the space of one dimensional signals. They conclude that the discrete

Fourier transform is an isomorphism between the space of one dimensional signals

and the operations of cyclic convolution and the Hadamard product.

2.5 Time Series vs Digital Signals

In recent years, the database community has been quite active proposing alternatives

for storing and querying non-conventional data such as scientific data and other forms

of non-transactional data. Among these approaches, it is worth mentioning the work

on time series data. Time series and digital signals are similar in the sense that

they both are sequences. Therefore, we could think of taking advantage of database

support for time series and use it for storing and querying signals. There is, however,

one conceptual difference between these two data types. For time series, the actual

time stamp for each measured value in the sequence is important. That is, the exact

calendar time associated to a value is needed in the analysis [81]. For signals, this

is not the case and only the order and temporal relationship between the values in a

signal are of interest.

Despite the fact that temporal databases has been extensively investigated [20,

27, 28, 29, 85] there are only a few works that deal with a data model for time series

data [22, 81]. Most of the proposed models are based on a predefined set of extended

relational operations, their expression power with respect to time series transforma-

tion, filtering, etc., is limited [19]. In the work of Segev and Chandra [81], the data

model is basically a database design for time series data. It provides the restrictions

for the implementation of a database for time series analysis. The work of Faget et
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al. [22] provides an extension of the relational model specifically for the management

of synchronized time series data. Here, the model consists of an abstract representa-

tion of time series and a set of operations. Nevertheless, such set of operations must

be defined by the users at any particular application. This means that the model

does not have the sufficiency of expressing queries or processing operations over time

series by itself.

2.6 Research Opportunities

Digital signal processing and analysis have made use of well studied models for the

representation of signals and their algorithms. These models were thought, originally,

as real-time or on-line processing models. Nevertheless, given the massive amounts

of signal data produced everyday, such models require to be reconsidered. The task

of processing signals is no longer an exclusive real-time process. It is impossible to

approach the task of storing and processing such large signal data sets using con-

ventional computing and signal processing solutions. Traditionally, signal data man-

agement and signal processing have been addressed separately in different computing

platforms. Such approach is adequate for small size data but highly inefficient for

large amounts of data. For instance, in a massive data scenario, processing tasks us-

ing the file-system and ad-hoc approaches cannot be implemented without a complex

data management due to the discrepancy between data size and memory availability.

Moreover, data integrity can be threaten by transferring data from one computing

platform to another. On the other hand, database data management systems lack

of the fundamental operations and data representation required to be a solution for

the signal data management and processing needs. Consequently, it is mandatory

to create the required tools to merge signal data management and processing in an

efficient way.
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We have identified the lack of a suitable formal model (algebra) for digital signals

in a database environment. Specifically, a model where the digital signal management

and signal data processing converge. A model capable of expressing both linear and

nonlinear signal processing techniques using a suitable representation for signal data

stored in a database environment.

In the following chapter, we explore the various forms of mathematical representa-

tions of digital signals and their relation to the physical design of database systems.

Moreover, we follow the process of a new database’s design to describe the logical

design of a basic database of ECG signals. Moreover, in Chapter 4, we propose a

signal data algebra (abstract objects and their fundamental operations) for the rep-

resentation and processing of signal data in a database environment.
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Chapter 3

Signal Data Management

A formal data representation is a key component for the definition of any data model.

In this section, we propose a formal representation for signals. We abstract signals

as sequences and express sequences as sets. We then compare this representation

with the logical data abstractions used by Relational Database Management Systems

(RDBMS). Throughout this thesis, we will be using the abbreviations RDBMS and

DBMS interchangeably, both referring to relational DBMS.

The main motivation behind this research project is the need to define a model

for digitally storing, managing and processing ECG signal data. Given this motiva-

tion, we are considering ECGs as finite digital signals. The process of analog-digital

conversion is not in the scope of this work.

3.1 A Formal Representation for Finite Digital Signals

The term digital signal is here applied to those signals whose amplitude and time are

both represented by discrete variables. The term discrete signal is usually associated

to signals that only their time is considered discrete. For simplicity, we will consider

ECG signals formally as discrete signals since this consideration is not relevant to the

scope and the intended goal of this dissertation. In this work, we will use the term

digital signal in a broad sense to refer to discrete-time signals.

Digital signals can be represented as sequences of numbers where, unlike the case

for sets, their most important characteristic is the order. A finite sequence, x, can be
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written as

x = (x[0], x[1], . . . , x[N − 1]) (3.1)

or, alternatively, as x = (x[i]), with x[i] ∈ R and i ∈ ZN = {0, 1, . . . , N − 1}. Note

that the index i represents the position of each element within the sequence.

We can interpret x as a function to represent a sequence. The domain of a function

x is a subset of the integers and the co-domain is the set of the real numbers, as it is

defined by the following expression.

x : ZN → R (3.2)

The term x[i] is here used to refer to the function x evaluated at i. Note that we

use brackets [ ] to indicate the discrete-time nature of the function and to differentiate

it from continuous-time functions that commonly use parenthesis ( ) in the function

expression. For finite length signals, prepending and appending of zeros can be used

to extend its domain to the whole set of integers Z if needed.

In most of the signal processing literature the term x[i] is used to represent an

entire sequence. In this work, we refer to x[i] as the “value of the ith element of the

sequence x” or just the function x evaluated at i. Note that it is possible to expand

this definition to include representations in a continuous form as x(i∆t), where ∆t ∈ R

is a constant that denotes the sampling interval or period in seconds. In this case,

the time index has physical units of time, but it is isomorphic to the integers [84].

An alternative way to look at a function x is to consider it as a special type of

relation. Therefore, since a relation is simply a set of ordered pairs, we can represent

a sequence or digital signal as a set. This set representation of a digital signal can

be obtained using pairs of the values x[·] and the elements of the set of non-negative

integers ZN , which can be regarded as an indexing set. Consequently, a sequence or

digital signal can be represented by the relation X, which it is defined as



33

X = {(i, x[i]) : i ∈ ZN and x[i] ∈ R}. (3.3)

This formal representation of a digital signal as a relation or set of pairs can be

convenient due to the extensive usage of the relational model by Database Manage-

ment Systems (DBMS). In this work, the sequences represented as sets will be denoted

by uppercase bold letters.

The described representations gives us notions of the kind of data structures that

can be used for storing digital signals in a DBMS. The basic elements that a data

structure must consider are the index positions and their corresponding real values.

There are different data structures alternatives for storing digital signals using a

DBMS. These alternatives depend on the signal representation that we decide to use.

3.2 Data Structures for Storing Signals in a RDBMS

In order to effectively store digital signals using a DBMS, we have to abstract them

using the data types and data structures provided by the system. We identify three

alternatives for storing the elements of a sequence representing a digital signal in a

conventional DBMS, namely, tuple-store, attribute-store, and BLOBS.

3.2.1 Tuple-Store

Using records or tuples is the straightforward method for data representation in a

conventional DBMS since most major DBMS vendors utilize a record-oriented storage

system [90]. In this case, digital signals can be stored using a relation named ST with

the following schema.

ST 〈SId, Sequence〉,
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where the SId attribute is an identification number for each signal. The attribute

Sequence is used to represent an entire signal at each tuple. For this purpose, we use

an array structure, where, in this case, each element of the array uses float data type.

It is worth noting that this data type was introduced in standard SQL:1999 [16].

The tuple-store alternative has the advantage that the sequences keep their inter-

nal order because of the nature of arrays. On the other hand, this alternative requires

that the whole array must be in memory in order to address particular elements of

the sequence. This can be considered as a disadvantage with respect to other meth-

ods. This storage method is closely related to the sequence representation described

by Equation (3.1), where each element is indexed by its position in the sequence or

array.

3.2.2 Attribute-Store

An alternative for storing digital signals, the attribute-store approach, can be used

in a conventional DBMS by defining a relation with two attributes as represented by

the following schema.

SA〈SId, IndexId, ElemV alue〉

In this case, each tuple in the relation represents just one element from a sequence.

Here again, the SId attribute is an identification number for each signal. The at-

tribute IndexId holds the position value of each element in a particular sequence.

The attribute ElemV alue corresponds to the values of each of the element of the

sequence.

Each row of relation SA holds an element of a sequence. Unlike arrays, where the

order is implicit, here we need to sort the elements of a particular signal to arrange

them in their original order. The tuples produced by a query can be ordered on
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attribute IndexId using the SQL ORDER BY clause.

Since each element of the sequence is indeed a tuple from a relation, this method

is the actual database implementation of the abstract representation of a sequence

described in Equation (3.3), which uses pairs (i, x[i]) to represent elements in a se-

quence.

3.2.3 BLOBS

There is a third alternative that considers a type-less container, a special kind of

attribute in a database relation. This is actually a similar storing method to the

tuple-store. The difference resides in that here we are using a generic container for

storing a sequence instead of using the array data type. Data stored in such containers

are usually known as Binary Large OBjects (BLOBs). Here, we use a relation named

as SB to store a digital signal with two attributes as represented by the following

schema.

SB〈SId, Sequence〉

A drawback of using BLOBs as a method for storing data is the lack of operations

defined by the DBMS over such attributes. Moreover, it is well known that storing

large-volume data (such an ECG) in the form of BLOBs has a negative impact on the

performance of the database [80]. It also has significant storing overhead compared

to a filesystem storage [48].

3.3 Logical Modeling of ECG Signal Data in a RDBMS

A typical design process of a new database involves the transformation of a high-level

logical design of data into relational database schemas. The final step of this process

is the implementation of such schemas in a DBMS. In this section, we follow the
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process of a new database’s design to describe the logical design of a basic database

of ECG signals and to see how the relational database schemas can be obtained from

the logical design. We use the Entity/Relationship (E/R) Model to logically model

the signal data. Afterwards, we transform E/R diagrams into database schemas.

3.3.1 The Entity/Relationship Model of an ECG Signal Database

ECGs are represented by signal data. The particular characteristics of ECG signals

were described in Chapter 2. Here, we use the E/R model to logically describe an ECG

signal database. The E/R model is used to represent data through diagrams using

three type of elements: entities, attributes and relationships. An entity represents a

collection of real life objects and it is represented as a rectangle in the E/R diagram.

The attributes are the properties associated to an entity set and they are represented

as ovals. The relationships are connections between entities and they are represented

as diamonds in a E/R diagram.

The logical model obtained from the E/R analysis will lead us to use specific data

structures to store ECG signals. We can classify the data structures alternatives for

signals in two categories. BLOBs and Tuple-Store in one category and Attribute-Store

in another one. This classification is based on the nature of the objects used to store

the signals. In the case of BLOBs and Tuple-Store, the signals are logically stored in a

single object, whether a BLOB or an array. The design of a ECG signal database that

leads us to use this type of storage can be described by a E/R diagram as shown in the

Figure 3.1. The diagram represents ECG signal data following the approach of single

logical object. The E/R diagram has two entities and one relationship. One entity

is called ECG. This entity represents every electrocardiogram test performed, let say,

in a network of hospitals across the country. Each ECG test will have the following

attributes: IdECG, SamplingFreq, LengthTime and Mode. In the attribute IdECG
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represents a identification for each electrocardiogram. The attribute SamplingFreq

gives information about the sampling frequency of a particular ECG. LengthTime

gives the length in time units of the ECG. Finally, the attribute Mode is used to

describe the type test that was performed such as an exercise ECG, holter or other

types of ECG tests. On the other hand, the entity named Signals represents the

signals associated with an electrocardiogram. The attributes of the Signals entity

are: LeadName, and Sequence. The attribute LeadName gives information about the

lead name of the signal. The attribute Sequence represents the actual signal object.

The relationship HAS connects each ECG with a set of signals and it is a one to many

relationship. That is, for each ECG there could be N signals.

HASECG Signals

LengthTime Mode

IdECG SamplingFreq LeadName Sequence

1 N

Figure 3.1: E/R Diagram for the BLOBS and Tuple-Store approach.

An alternative logical design of an ECG signal database that requires the use of the

Attribute-Store approach is illustrated by the E/R diagram of the Figure 3.2. Here,

the entities ECG and Signals, and the relationship HAS remain the same, except that

the attribute Sequence is not present in this diagram. The entity set Values is now

included in this approach. The attributes of Values are TimeIndex and Value and

they represent the position and the value of each element of the sequence or signal,
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respectively. The relationship CONTAINS establishes the link between each signal and

its values and it is a one to many relationship.

HASECG Signals

LengthTime Mode

IdECG SamplingFreq LeadName

1 N

TimeIndex Value

1

N

Values

CONTAINS

Figure 3.2: E/R Diagram for the Attribute-Store approach.

3.3.2 Database Relational Schemas of an ECG Signal Database

In order to translate the previous E/R diagrams into database relational schemas, we

do the following steps:

• Turn each entity set into a relation with the same set of attributes, and

• Replace a relationship by a relation whose attributes are the keys for the con-

nected entity sets.
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Let us consider the two entity sets ECG and Signals from the E/R diagram

of Figure 3.1. The attributes for the ECG entity set are IdECG, SamplingFreq,

LengthTime, and Mode. As a result, a typical instance of the relation ECG is shown

in Figure 3.3. Next, consider the entity set Signals from Figure 3.1. There are

two attributes, LeadName, and Sequence. Thus, we would expect the corresponding

Signals relation to have schema Signals〈LeadName, Sequence〉 and a typical instance

is shown in Figure 3.4. Similarly, the relationship HAS shown in Figure 3.1 can be

transformed into a relation with the attributes IdECG, LeadName, and Sequence. The

relation HAS is shown in Figure 3.5.

IdECG SamplingFreq LengthTime Mode

C786 100 24 Holter
A578 200 0.5 Exercise
J456 250 1.5 Standard

Figure 3.3: A sample instance of the ECG relation.

LeadName Sequence

V1 [-0.116996,-0.118197,-0.114594 . . . -0.067752,-0.068954,-0.059345]

V6 [0.091990,0.107604,0.141234 . . . -0.137415,-0.138398,-0.154230]

V3 [0.515968,0.458317,0.393459 . . . 0.087186, 0.055958, 0.017524]

V1 [-0.160235,-0.157833,-0.179452 . . . -0.074959,-0.077361,-0.074959]

aVR [-0.091774,-0.094176,-0.102584 . . . 0.361030,0.287765,0.225309]

aVL [0.021127,0.042746,0.052355 . . . -0.002895,-0.022112,-0.028117]

Figure 3.4: A sample instance of the Signals relation.

In the case of the E/R diagram shown in Figure 3.2, the previous schemas also

apply. The only difference is that here, the attribute Sequence of the entity set Signals

is not necessary. Now, the relationship CONTAINS is the link between the entity set

Signals and Values. The relationship CONTAINS is a many to many relationship
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and it can be transformed into a relation. An instance of the relation CONTAINS is

shown in the Figure 3.6.

IdECG LeadName Sequence

J456 V1 [-0.116996,-0.118197,-0.114594 . . . -0.067752,-0.068954,-0.059345]

J456 V6 [0.091990,0.107604,0.141234 . . . -0.137415,-0.138398,-0.154230]

A578 V3 [0.515968,0.458317,0.393459 . . . 0.087186, 0.055958, 0.017524]

C786 V1 [-0.160235,-0.157833,-0.179452 . . . -0.074959,-0.077361,-0.074959]

A578 aVR [-0.091774,-0.094176,-0.102584 . . . 0.361030,0.287765,0.225309]

A578 aVL [0.021127,0.042746,0.052355 . . . -0.002895,-0.022112,-0.028117]

Figure 3.5: A sample instance of the HAS relation.
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LeadName TimeIndex Value

V1 0 -0.116996
V1 1 -0.118197
V1 2 -0.114594
...

...
...

V1 8639997 -0.067752
V1 8639998 -0.068954
V1 8639999 -0.059345

aVR 0 -0.091774
aVR 1 -0.094176
aVR 2 -0.102584

...
...

...
aVR 1349997 0.361030
aVR 1349998 0.287765
aVR 1349999 0.225309

Figure 3.6: A sample instance of the CONTAINS relation.
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Chapter 4

An Algebra for Signal Data Processing

In this chapter, we describe our proposed formal data model for signals. We start by

defining a formal representation of signals. After this, we define the set of operations

necessary to express signal transformation algorithms. Our proposed model is based

on the work of Ritter et al. [76] where an algebra for processing images is proposed.

Since one of our goals is to provide a formal model for signal data management, we

limit our attention to finite real-valued signals which can be stored and manipulated

by a computer. Therefore, we start with the definition of an abstract object to

represent a signal.

4.1 Signals as Relations

As previously described, a sequence is a suitable representation of a digital signal. It

can be mathematically defined as a set of pairs, particularly a function. Consequently,

we use a set pairs to be the formal representation of a signal in this proposal. The

reason for this is twofold. First, set theory is a mature and well developed area of

mathematics. Second, a set representation fits well with the database theory (the

relational model) which is based on the set theory. This choice allows us to use an

abstract representation that is suitable for both, signal data management and signal

data processing.

Definition 1 (Sequence or Signal). A real-valued sequence of length N can be rep-

resented as a function X : ZN → R. The set of all functions ZN → R is denoted

by RZN . The set R is the set of all possible values for each element of the sequence
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and ZN is the set of all possible index positions in the sequence and will be named the

indexing set. Therefore, a sequence X is defined by the following set of pairs.

X = {(i, x[i]) : x[i] ∈ R, i ∈ ZN} (4.1)

Each element in the sequence is represented by a pair (i, x[i]). The first element

of the pair, i, is an index that specifies the position of the element in the sequence.

The second element, x[i], represents the value associated with position i. In other

words, x[i] is a sample value of a digital signal at i. The cardinality of this set

corresponds to the length of the sequence. Let us define the length of a sequence

using the cardinality of a set denoted by | · |, thus, the length of the sequence X can

be expressed as |X| = N .

A particular kind of sequence where all the N sample values (x[i]) are the same

is called a constant sequence.

Definition 2 (Constant Sequence). A sequence with the same value at every index

position will be named a constant sequence. Let us consider a sequence Z ∈ RZN

defined as,

Z = {(i,K) : K ∈ R, i ∈ ZN}, (4.2)

which is a constant sequence with a value K at every index position.

Some useful constant sequences are those consisting of only ones and only zeros.

We will denote these sequences as 1 = {(i, 1) : i ∈ ZN} and 0 = {(i, 0) : i ∈ ZN},

respectively. Without loss of generality, it is assumed that when 1 and 0 are used

in a sequence expression, they have the necessary length to be consistent with the

sequences and operations involved in the expression.
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4.2 Sequence Operations

Now, we proceed to define operations for processing sequences. Since the elements

of the sequences are real values, the binary operations between sequences can be

compared to the binary operations defined on the set of real numbers.

Definition 3 (Binary Operations Between Sequences). Let X, Y ∈ RZN be two

sequences of the same length. Let ⊙ be a binary operation on R, then, the result of a

binary operation ⊙ between two sequences is the sequence Z = X ⊙Y defined in the

following expression.

Z = X⊙Y = {(i, c[i]) : c[i] = x[i]⊙ y[i], i ∈ ZN} (4.3)

We define three binary operations between sequences. All of them are commu-

tative and associative for sequences. Let X, Y ∈ R
ZN be two sequences, the binary

operations of addition (+), multiplication (×) and maximum (max) are defined as

follows.

X + Y = {(i, c[i]) : c[i] = x[i] + y[i], i ∈ ZN} (4.4)

X×Y = {(i, c[i]) : c[i] = x[i]× y[i], i ∈ ZN} (4.5)

1 max(X,Y) = {(i, c[i]) : c[i] = max(x[i], y[i]), i ∈ ZN} (4.6)

Similar to real numbers, it is possible to define additional binary operations derived

from the above fundamental operations. Two of these operations are exponentiation

and logarithm. Using the same sequences X and Y previously considered, we now

define exponentiation and logarithm.

1For this operation, we decided not to use the infix notation in order to keep the number of
symbols to a minimum.



45

Exponentiation: XY = {(i, c[i]) : c[i] = (x[i])y[i] if x[i] 6= 0, (4.7)

otherwise c[i] = 0, i ∈ ZN}

Logarithm: logX Y = {(i, c[i]) : c[i] = logx[i] (y[i]) , i ∈ ZN} (4.8)

After defining binary operations between sequences, we open the possibility to

have operations between scalars and sequences. This is because a scalar and a con-

stant sequence behave in a similar manner when used as operands with sequences.

Definition 4 (Operations Between Scalars and Sequences). Let us consider a scalar

k ∈ R and a sequence X ∈ RZN , we now define the following operations between

scalars and sequences.

K + X = X +K = {(i, c[i]) : c[i] = x[i] +K, i ∈ ZN} (4.9)

K ×X = X×K = {(i, c[i]) : c[i] = x[i]×K, i ∈ ZN} (4.10)

max(X, K) = max(K,X) = {(i, c[i]) : c[i] = max(x[i], K), i ∈ ZN} (4.11)

XK = {(i, c[i]) : c[i] = x[i]K if x[i] 6= 0, otherwise c[i] = 0, i ∈ ZN} (4.12)

logK X = {(i, c[i]) : c[i] = logK x[i], i ∈ ZN} (4.13)

As previously noted, scalar operations can also be defined by using a constant

sequence. For this, let us consider the constant sequence Z = {(i,K) : K ∈

R for every i ∈ ZN}, then,

X +K = X + Z

X×K = X× Z
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max(X, K) = max(X,Z)

XK = XZ

logK X = logZ X

Continuing with the analogy between real-valued sequences and the set of real

numbers, the binary operations between sequences; subtraction (−), division (÷),

and minimum (min) can be defined in terms of the previously defined fundamental

operations. Let X, Y ∈ RZN be two sequences, the derived binary operations between

sequences can be defined as follows.

X−Y = X + (−Y), (4.14)

where −Y is an unary operation defined as

−Y = {(i,−y[i]) : (i, y[i]) ∈ Y}. (4.15)

The operations of division and minimum are defined as follows.

X÷Y = X× (Y)−1 (4.16)

min(X,Y) = −max(−X,−Y) (4.17)

It is also possible to extend the use of unary operations from the set of real values

to the set of finite real-valued sequences. However, due to the large variety of possible

unary operations (trigonometric functions, ceiling, floor, absolute value, to name just

a few), we define only a general unary operation over sequences.

Definition 5 (Unary Operations over Sequences). Let X ∈ RZN be a sequence. A

unary operation over a real-valued sequence can be formally described as a function

u : RZN → RZN and defined as follows.
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u(X) = {(i, c[i]) : c[i] = u(x[i]), i ∈ ZN} (4.18)

A logic operation is one that goes from RZN to {1, 0}ZN . A logic predicate is

applied to each element on a real-valued sequence, and, as a result, a sequence of

ones and zeros is created. We formalize such operation in the following definition.

Definition 6 (Logic Operation over Sequences). Let X ∈ RZN be a sequence and

P : R → {1, 0} a predicate. A logic function BP : RZN → {1, 0}ZN is defined as

follows.

BP (X) = {(i, c[i]) : c[i] = P (x[i]), i ∈ ZN} (4.19)

Besides logic operations, we have to consider additional operations for reducing

sequences into real numbers. Such kind of operations will be named Aggregate Func-

tions.

Definition 7 (Aggregate Functions over Sequences). Let X ∈ RZN be a sequence. An

aggregate function of sequences is derived from a binary operation between sequences.

Let us consider op to be a binary operation between real values. An aggregate function

AGG : RZN → R is defined as follows.

AGG(X) = x[0] op x[1] op x[2] op · · · op x[N − 2] op x[N − 1] (4.20)

Particularly, we consider four aggregate functions over sequences from the binary

operations +, ×, max, and min, which are defined as follows.

SUM(X) =
∑

0≤i≤N−1

X = x[0] + x[1] + x[2] + · · ·+ x[N − 2] + x[N − 1] (4.21)
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MUL(X) =
∏

0≤i≤N−1

X = x[0]× x[1]× x[2]× · · · × x[N − 2]× x[N − 1] (4.22)

MAX(X) = max
0≤i≤N−1

x[i] (4.23)

MIN(X) = min
0≤i≤N−1

x[i] (4.24)

Additionally, we can obtain an aggregate function by using the cardinality of a

set, | · |. In our proposed model, the cardinality of a set representing a sequence,

is equivalent to the number of elements of the sequence. Therefore, we define the

aggregate function COUNT : RZN → Z∗, with Z∗ = {0} ∪ Z+ , using the cardinality

of a set as follows.

COUNT (X) = |X| (4.25)

Other aggregate functions can be obtained combining the previous functions. For

instance, the function average, AV G : RZN → R, can be defined considering a non

empty set X using the SUM and the COUNT functions as follows.

AVG(X) =
SUM(X)

COUNT (X)
(4.26)

The next operation we define, indexing transformation, can be used to modify a

sequence in terms of the indexing locations of its elements.

Definition 8 (Indexing Transformations over Sequences). Let ZN and ZM be two

indexing sets. An indexing transformation on a sequence X ∈ RZN can be obtained

by using a composition between a sequence and a function f : ZM → ZN . Then, an

indexing transformation is defined as

X ◦ f = {(j, x[f(j)] : j ∈ ZM} (4.27)

Basically, an indexing transformation receives an input sequence of length N and

returns a sequence of length M . Therefore, this transformation is not only capable
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of modifying the position of the elements in the sequence, but also, the length of the

sequence. A particular common indexing transformation is the reflection of sequences.

This operation is used when it is necessary to invert the order of the elements in a

sequence. The last element of an input sequence becomes the first element of the

output sequence and the rest of the elements are moved accordingly.

4.3 Signal Processing Operations

The previously defined operations and functions cover the basics of sequence transfor-

mation. Nevertheless, signal transformations often require more sophisticated opera-

tions such as those based on sliding windows. In order to include this transformation

in the proposed algebra, we define an abstract object named kernel structure, which is

a matrix-like structure that allow us to construct an sliding window as it is described

in Chapter 5.

Definition 9 (Kernel Structure ). Let ZN and ZM be two indexing sets. A kernel

structure is a function HHH : ZM → R
ZN that maps each j ∈ ZM into a real valued

sequence HHH [j] ∈ RZN . For notation convenience, let us define Hj ≡HHH [j]. Formally,

each sequence Hj is defined as

Hj = {(i, hj[i]) : i ∈ ZN} (4.28)

The set of all real valued kernel structures from ZM to ZN is denoted by (RZN )ZM .

The kernel structure can be understood as a template where the values of each

of its sequences Hj are defined based on the context of their usage in a particular

operation. In Section 5.1, the process of filling in or defining such values is described.

A kernel structure can be graphically represented as a matrix-like structure as shown
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Figure 4.1: Kernel Structure

in Figure 4.1. Next, we provide a formal definition for a processing operation between

a sequence and a kernel structure.

Definition 10 (Processing Operations over Sequences). Let X ∈ RZN be a sequence.

A processing operation, σ , between a sequence and a kernel structure, HHH , is defined

by the following expression.

X σ HHH = {(j, w[j]) : w[j] = AGG(X op Hj), j ∈ ZM}, (4.29)

where AGG ∈ {SUM,MUL,MAX,MIN,COUNT}, and op ∈ {+,−,×,÷}.

Some examples of processing operations are linear filtering (⊗), erosion (⊖), dila-

tion (⊕), and subsequence matching (⊘). We can express each of these operation as
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follows.

X⊗HHH = {(j, w[j]) : w[j] =
∑

(X×Hj), j ∈ ZN} (4.30)

X⊖HHH = {(j, w[j]) : w[j] = MIN(X−Hj), j ∈ ZN} (4.31)

X⊕HHH = {(j, w[j]) : w[j] = MAX(X + Hj), j ∈ ZN} (4.32)

X⊘HHH = {(j, w[j]) : w[j] =
∑

((X−Hj)
2), j ∈ ZN} (4.33)

It is worth noting that X is a sequence of length N (X ∈ RZN ) while X σ HHH

is a sequence of length M (X σ HHH ∈ RZM ). This means that a processing opera-

tion is capable of modifying the length of an input sequence. In consequence, our

model has the expressive power to define other common length-changing sequence

transformations, such as decimation and interpolation.
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Chapter 5

Modeling Analysis Algorithms: ECG

Signals

In this chapter, we use our proposed signal algebra to express ECG signal processing

techniques. We express a particular example of QRS wave detection using signal

algebra. Moreover, we prove that the proposed model is capable of expressing any

transformation from a finite digital signal into another finite digital signal.

5.1 Modeling ECG Analysis

We present five techniques; linear filtering, morphological operators, subsequence

matching, discrete Fourier transform, and SAX. We have found that all these tech-

niques are similar in their operation in the sense that all of them are based on an

sliding window.

5.1.1 Sliding Window

The sliding window is a procedure that allows a window of specific length to move

through a sequence. In doing so, it defines subsequences along the path. The sliding

window procedure is illustrated in Figure 5.1, where a window of length 4 slides along

sequence X. At each position i of sequence X, a subsequence of length 4 is defined

by the window. In a sequence processing operation, each subsequence is transformed,

usually, into a single value, which in turn becomes an element of a resulting sequence

Z. This transformation is usually, but not limited to, a two steps process. First, each

subsequence of X is transformed by applying a binary operation (op) with a sequence
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that characterizes the whole processing operation (e.g., a FIR filter); the sequence Y

in this case. Second, the transformed subsequence Pi is reduced to a single value by

an aggregate function to obtain an output sequence as shown in Figure 5.2.

x[i+1]x[i] x[i+2] x[i+3] x[i+4] x[i+5] x[i+6] x[i+7] x[i+8]

x[i+1]x[i] x[i+2] x[i+3] x[i+4] x[i+5] x[i+6] x[i+7] x[i+8]

x[i+1]x[i] x[i+2] x[i+3] x[i+4] x[i+5] x[i+6] x[i+7] x[i+8]

x[i+1]x[i] x[i+2] x[i+3] x[i+4] x[i+5] x[i+6] x[i+7] x[i+8]

step i

step i+2

step i+1

step i+3

Sequence X

Figure 5.1: Sliding Window.

5.1.2 Linear Filtering

Linear filtering is widely used for processing ECG signals. It is accomplished by

applying the convolution operation between a signal and a filter’s impulse response

sequence. Common processing applications such as matched and adaptive filtering

make use of Finite Impulse Response (FIR) filters [72].

In a FIR filter, the convolution is computed using Equation (2.8). In order perform

this computation, we need to pass an sliding window along the input sequence and

perform a sequence operation at each position. This process is equivalent to the task

of dividing the input sequence into overlapped subsequences of the same length of
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Z z[0] z[1] z[2] z[3] z[4] z[5] z[6] z[7]

y[0] y[1] y[2] y[3]

iP

Aggregate Function

op op op op

Figure 5.2: Processing operation on a sequence.

the impulse response sequence and then applying sequence operations between the

individual subsequences and the impulse response sequence.

Let X,Y ∈ RZN be an input sequence and the impulse response sequence of a

FIR filter, respectively. As part of the convolution operation, the impulse response

sequence is to be reflected. We can implement this reflection by building a kernel

structure in such a manner that the reflected impulse response sequence will be shifted

at each element of the kernel structure. This allows us to use each Hj and multiply

it by the input sequence defining each step of an sliding window. After this element-

wise multiplication, an aggregate function reduces the resulting sequence into a scalar

which will be an element of the output sequence.

Following the notation used in Definition 9, we construct the kernel structure

HHH : ZN → RZN by defining its sequence elements Hj (Hj ≡HHH [j]) as follows.

H0 = {(0, y[0]), (1, 0), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
H1 = {(0, y[1]), (1, y[0]), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
...
HN−1 = {(0, y[N − 1]), (1, y[N − 2]), . . . , (N − 2, y[1]), (N − 1, y[0])}.
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Alternatively, we can describe each sequence Hj as

Hj = {(i, hj [i]) : hj[i] = y[−i+ j], with hj[i] = 0 if (−i+ j) /∈ ZN}.

Figure 5.3 shows the graphic representation of the kernel structure HHH . As we can

see, the kernel structure defines an sliding window with the position of its elements.

Finally, a FIR filtering (⊗) of a sequence X with an impulse response sequence Y,

both of length N , can be obtained by the following expression.

X⊗HHH = {(j, w[j]) : w[j] = SUM(X ×Hj), j ∈ ZN} (5.1)

Figure 5.3 shows the graphic representation of the kernel structure HHH .

Note that, for ease of explanation, we built the kernel structure in such a manner

that |X⊗HHH | = N despite the fact the length of the convolution operation between

two sequences of length of N is 2N − 1. However, the length of the sequence x⊗HHH

can be defined as required in a particular application by building a suitable kernel

structure.

Our proposed model provides a formal expression for FIR filtering. Expres-

sion (5.1) represents one of the most utilized processing algorithms for digital signals.

Moreover, this expression can be used for implementing the dyadic discrete wavelet

transforms [30, 49] and cubic spline interpolation [24, 97] as they can be expressed by

FIR filtering. Both techniques have been widely used to address ECG analysis tasks

such as signal enhancement and feature extraction, as described in Chapter 2.

5.1.3 Mathematical Morphology

Mathematical Morphology (MM) operators also use an sliding window for processing

signals. Each subsequence defined by the sliding window interacts with a structuring

element (SE). In the case of erosion, each subsequence is added to the SE sequence,
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Figure 5.3: Kernel Structure HHH for digital filtering.

element-wise. On the other hand, for dilation, the reflected SE sequence and each

subsequence are subtracted element-wise. Finally, the operations of minimum and

maximum are applied to each resulting subsequence to obtain each element of the

output sequence.

Let Y ∈ RZN be a structuring element sequence for processing an input sequence

X ∈ R
ZN . We can build a kernel structure HHH e : ZN → R

ZN for the erosion operation.

Again, the construction of HHH e allows us to represent an sliding window. Each Hej

is subtracted to the input sequence and then the minimum element of the resulting

sequence is obtained. We define the elements of HHH e , that is, the sequences Hej
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(Hej ≡HHH e[j]) as follows.

He0 = {(0, y[N − 1]), (1, 0), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
He1 = {(0, y[N − 2]), (1, y[N − 1]), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
...
HeN−1 = {(0, y[0]), (1, y[1]), . . . , (N − 2, y[N − 2]), (N − 1, y[N − 1])}.

A graphic representation of HHH e is shown in Figure 5.4. As we can see, the kernel

structure HHH e allows us to construct an sliding window.
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Figure 5.4: Kernel Structure HHH e for erosion.

Alternatively, we can express each Hej as

Hej = {(i, hej[i]) : hej[i] = y[i−j+N−1] with hej [i] = 0 if (i−j+N−1) /∈ ZN , i, j ∈ ZN}.
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The MM operation erosion (⊖), from Equation (2.17), can be expressed using our

proposed model by the following expression.

X⊖HHH e = {(j, w[j]) : w[j] = MIN(X−Hej), j ∈ ZN} (5.2)

In the case of dilation, we can also construct a kernel structure HHH d : ZN → RZN .

The elements of HHH d are the sequences Hdj. These sequences are added element-wise

to the input sequence using a binary operation. Then, the maximum element of the

resulting sequence is obtained and it will be an element of the output sequence. The

sequences Hdj (Hdj ≡HHH d[j]) are defined as follows.

Hd0 = {(0, y[0]), (1, 0), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
Hd1 = {(0, y[1]), (1, y[0]), (2, 0), . . . , (N − 2, 0), (N − 1, 0)},
...
HdN−1 = {(0, y[N − 1]), (1, y[N − 2]), . . . , (N − 2, y[1]), (N − 1, y[0])}.

The graphic representation of HHH d is similar to the kernel structure for linear filtering

shown in Figure 5.3.

Likewise, an alternative expression for the sequences Hdj is given by

Hdj = {(i, hdj [i]) : hdj [i] = y[−i+ j] with hdj [i] = 0 if (−i+ j) /∈ ZN}.

After this, the MM operation dilation (⊕) which is defined in Equation (2.18) can

be represented using the following expression.

X⊕HHH d = {(j, w[j]) : w[j] = MAX(X + Hdj), j ∈ ZN} (5.3)

5.1.4 Subsequence Matching

Subsequence matching can also be understood as an sliding window procedure. Here,

a pattern sequence is compared to each subsequence in the input sequence using a

distance function. The pattern sequence and each subsequence are of the same length.
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The process of defining the subsequences at every position of the input sequence is

accomplished by an sliding window. Then, a distance value is computed at every

position step of the sliding window. Consequently, a resulting sequence is obtained

and its elements are the distances computed between the pattern sequence and each

subsequence of the input sequence.

Let us consider an example of similarity search using the 1NN (1 nearest neighbor)

approach. Let Y ∈ RZN be a beat pattern sequence which is required to be searched

along an input sequence X ∈ RZM with M >> N . We need to construct a kernel

structure HHH s in a way that it allows us to generate an sliding window. We can build

HHH s by defining its elements Hsj (Hsj ≡HHH s[j]) using the elements of the sequence

Y. Each sequence Hsj represents a step that the beat pattern travels along the input

sequence. In this way, we can apply a distance function at every step in order to find

the searched pattern. We define Hsj as follows.

Hs0 = {(0, y[0]), (1, y[1]), . . . , (N − 1, y[N − 1]), . . . , (M − 2, 0), (M − 1, 0)},
Hs1 = {(0, 0), (1, y[0]), . . . , (N − 1, y[N − 2]), (N, y[N − 1]), . . . , (M − 1, 0)},
...
HsN−1 = {(0, 0), (1, 0), . . . , (N − 1, 0), (N, y[0]), . . . , (M − 1, y[N − 1])}.

The sequences Hsj are given by the following expression.

Hsj = {(i, hsj[i]) : hsj[i] = y[i− j] with hsj[i] = 0 if (i− j) /∈ ZN}

The graphic representation of HHH s is shown in Figure 5.5.

The expression for the computation of the sequence distance (⊘) is obtained using

a processing operation with a square exponentiation operation. Here, we also use a

logic function B6=0 to keep only M non zero values before applying the aggregation

operation SUM . The rest of the elements will be zeros. In this case, the logic output
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Figure 5.5: Kernel Structure HHH s for subsequence matching.

values from the logic function are 1 and 0. We compute the sequence of distance by

using the following expression of our proposed model.

(X⊘HHH s)
1

2 = {(j, w[j]) : w[j] =
(
SUM

(
(X−Hsj)

2 × B6=0(Hsj)
)) 1

2 , j ∈ ZN} (5.4)

The values at each position of the sequence X ⊘HHH s are the distances between

the sequence pattern and the subsequence at that position. The last step is find-

ing the position of the minimum element of the sequence X ⊘HHH s), that is, the

position of the value MIN(X⊘HHH s). Expression (5.4) represents the operation sub-
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sequence matching using Euclidean distance. In the literature we can find several

approaches [23, 36, 46] that can also be defined using this expression.

5.1.5 Discrete Fourier Transform

In order to express the real valued DFT using our proposed model, we build two

kernel structures, namely, HHH a and HHH b. If we consider X as the input sequence, the

formulation of the real DFT uses the linear filtering operation(⊗) and it is given by

X1 = (X⊗HHH a), (5.5)

X0 = (X⊗HHH b), (5.6)

where

Haj = {(i, haj[i]) : haj [i] = cos(2πji/N) for N = |X| and i ∈ ZN},

for 0 ≤ j ≤ N1 and Haj ≡HHH a[j] and

Hbm = {(i, hbj [i]) : hbj [i] = sin(2πmi/N) for N = |X| and i ∈ ZN},

for 1 ≤ m ≤ N0, and Hbj ≡HHH b[j].

As we can see in Expressions (5.5) and (5.6), we can express the real Discrete

Fourier Transform using our proposed model with one processing operation.

5.1.6 SAX Approximation of a Signal

The transformation of a digital signal into a symbolic representation have been con-

sidered by researchers in order to take advantage of text processing and bioinformatics

algorithms. A popular choice of symbolic representation is the Symbolic Aggregate

Approximation (SAX) proposed by Lin et al. [47]. To obtain the SAX representation



62

of a signal, we start by normalizing and transforming the original signal using Piece-

wise Aggregate Approximation (PAA). This first step generates an output sequence

that now, compared to the original sequence, is shorter, its mean is equal to zero,

and its standard deviation is equal to one. The second step of the SAX process con-

sists of mapping the PAA coefficients into SAX symbols. The SAX symbols have the

property of equiprobability. The mapping procedure makes use of subsets of the real

numbers that have a SAX symbol associated. Then, each PAA value is compared to

the subsets in order to assign a SAX symbol.

Let us consider an input sequence X of length N . The process of transforming X

into a PAA sequence of length W (assuming N mod W = 0) can be defined in our

model by the Expression (5.7).

XPAA = (X⊗HHH x), (5.7)

where

Hxj = {(i, haj [i]) : haj [i] =
W

N
if j

N

W
≤ i ≤ (j+1)

N

W
−1 otherwise haj [i] = 0, i ∈ ZN}

with 0 ≤ j ≤ W − 1 and Hxj ≡ HHH x[j]. That is, each sequence Hxj allows us to

divide the input sequence into W frames and to compute the average at each frame.

Finally, each SAX symbol can be assigned by using a logic operation as described in

Definition 6. Using our proposed model, a SAX symbol associated to the set S will

be assigned by using the Expression (5.8).

BSm
(XPAA) = {(i, c[i]) : c[i] = T if xPAA[i] ∈ Sm, otherwise c[i] = F , i ∈ ZW}

(5.8)

A true value in the sequence TSm
(XPAA) will indicate that the SAX symbol as-

sociated to the set Sm will be assigned in that position. The normalization was not
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described in the previous equations but it can be expressed using the scalar operations

that were described in Definition 4.

5.2 Signal Processing Example: QRS Detection

One of the most popular QRS detection method is the one proposed by Pan and

Tompkins [67], which uses an algorithmic structure similar to the one illustrated

in Figure 2.6. The preprocessing stage of this algorithm starts with a band-pass

filter. This filter is implemented through a low-pass filter (LPF) and a high-pass

filter (HPF) in cascade, filtering out all frequencies outside of the range 5-12 Hz. The

filtered signal is then differentiated, squared and averaged. Differentiation provides

slope information while the squaring process makes all sequence’s values positive

and performs nonlinear amplification emphasizing the higher frequencies [67]. Time

averaging or moving window integration consists in adding the last C samples and

dividing by C. Figure 5.6 shows a simplified flow diagram of the Pan-Tompkins QRS

complex detector. This algorithm uses two sets of thresholds, one for the moving

window integration sequence and another one for the filtered ECG sequence. This

improves the reliability of QRS complex detection compared to using one sequence

alone [67]. In order to be identified as a QRS complex, a peak must be recognized as

such on both sequences.

Low and high linear filtering, differentiation and time averaging can be obtained

by linear filtering. Each of these processes requires a kernel structure characterized

by the corresponding sequence. For the particular case of the Pan-Tompkins method,

the sequences that characterizes the processes are depicted in Figure 5.7. The kernel

structures built using such sequence are denoted as HHH L (low pass filter), HHH H (high

pass filter), HHH D (derivative), and HHH A (average filter), respectively.

Expression (5.9) is the formal representation of the preprocessing stage of the
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Figure 5.6: Flow diagram of the Pan-Tompkins algorithm.

Pan-Tompkins algorithm, where Y is the output and E represents the original ECG

sequence.

Y = (((E⊗HHH L)⊗HHH H)⊗HHH D)2 ⊗HHH A (5.9)

and the filtered sequence W can be formally expressed as

W = ((E⊗HHH L)⊗HHH H) (5.10)

The process of peak detection consists of determining the positions where the signal

changes direction within a predefined time interval. In the decision process, each peak,

a local maximum, is classified as a signal peak or noise using two sets of thresholds

with two threshold levels in each of the sets. These threshold levels are continuously

modified and adapted to the most recent characteristics of the signal. However, since

in our case, we are representing stored signals, we use a simpler scheme of thresholds

based on the scheme of the Pan-Tompkins method, originally designed for on-line

detection. In Expressions (5.11) and (5.12), we define two thresholds denoted as ThI
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Figure 5.7: Sequences that characterize a) Low pass filter, b) High pass
filter, c) Derivative filter and d) Average filter.

and ThII to be applied to sequences W and Y, respectively.

ThI = NPKF + 0.25(SPKF −NPKF ), (5.11)

where NPKF is an estimate of the noise peak of the signal W and SPKF is an

estimate of the signal peak of W.

ThII = NPKI + 0.25(SPKI −NPKI), (5.12)

where NPKI is an estimate of the noise peak of the signal Y and SPKI is an

estimate of the signal peak of Y.

Most of the decision stages of the QRS detection algorithms are rather heuristic

and dependent on the results of the preprocessing stage [39]. Therefore, we represent

peak detection using the logic operations B>ThI
and B>ThII

. Logic operations were
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described in Definition 6. We denote WThI
and YThII

as the sequences obtained from

the peak detection process. The following expression are the representation of these

sequences.

WThI
= B>ThI

(W) (5.13)

YThII
= B>ThII

(Y) (5.14)

Finally, the position of the QRS waves is determined where both sequences, WThI

and YThII
, coincide. This requires a sequence logic operation “AND” which can be

expressed using the binary operation min(). Expression (5.15) represents the final

decision stage.

Z = min(WThI
,YThII

) (5.15)

The sequence Z contains an element of value ”1” at each position where the QRS

wave is located.

5.3 Sufficiency of the Proposed Model

In this section, we prove that our proposed model is capable of expressing any trans-

formation from a finite digital signal into another finite digital signal. We use the

approach described in the work of Ritter et al. [75], where a proof of sufficiency of an

image algebra was presented. We start with some preliminaries that help us in the

development of the proof.

Let us define a sequence Bk = {(i, bk[i]) : i ∈ ZN} for each k ∈ ZN , where the

values bk[i] are defined as follows.

bk[i] =

{
1, when k = i,
0, otherwise.

A graphic representation of sequences Bk is shown in Figure 5.8. The values at

positions where k = i are one and zero elsewhere.
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B0

B2

BN−1

BN−2

B1

21 3 N−4 N−3 N−2 N−10

00 0 0 0 00

00 0 0 00

0 0 0 0 00

00 0 0 00

00 0 0 0 0

1

10

0

1

1

1

0

0

Figure 5.8: Sequences Bk where bk[i] = 1 for k = i.

Let X ∈ RZN be an arbitrary sequence and f(y0, y1, . . . , yN−1) be a multivariate

polynomial with real coefficients and real variables. Then, let us consider the function

f̄(·), a sequence version of the polynomial f(·), where now the variables are real valued

sequences and the operations involved in the polynomial are sequence operations, as

they are defined in the proposed model . The multivariate sequence polynomial, f̄(·),

can be represented using two equivalent expressions as follows.

f̄(X) ≡ f̄(SUM(X ×B0)× 1, SUM(X ×B1)× 1, . . . , SUM(X×BN−1)× 1)

We construct the variables for f̄(·) by defining the sequences SUM(X ×Bk)× 1

with all its elements being the same variable element. That is, each sequence SUM(X×

Bk) × 1 is a constant sequence with all values equal x[k]. For example, variable
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SUM(X × B1) × 1 is the sequence where all its elements are the element x[1] of

sequence X, as represented in the following expression.

SUM(X ×B1)× 1 = (x[1], x[1], x[1], . . . , x[1], x[1], x[1])

where |SUM(X×B1)× 1| = N .

Basically, the multivariate polynomial function f̄(X) where its variables take val-

ues from the sequences X. The number of variables is equal to the length of X, in

this case, |X| = N . That is, N constant sequences are formed using each element of

X as the values of the sequences.

Since the proposed model is intended to represent sequences stored in computer

systems, the set of possible real values taken by the elements of any of stored sequence

is finite. The cardinality of this set depends on the number of bits used to represent

each value. We define the set of possible real numbers taken by a sequence as G =

{g1, . . . , gp} ⊂ R. Let us consider the set of all sequences of length N with values

taken from the set G, namely, RZN [G] = {X ∈ RZN : (i, x[i]) ∈ X, x[i] ∈ G, i ∈ ZN}.

Note that |RZN [G]| = pN .

Now, using Lagrange interpolation polynomials, we define a real univariate poly-

nomial hj(x) for each element of G. These polynomials are defined in such a way that

hj(gj) = 1 when evaluated at a particular element of the set G. Formally, we define

those p polynomials in Lemma 1.

Lemma 1. [Lagrange Interpolation Polynomials] For every j ∈ {1, 2, . . . , p}, where

p = |G|, there is a polynomial hj(x) such that

hj(gi) =

{
1, when i = j,
0, otherwise.
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Proof. Let Lj(x) = (x− g1)(x− g2) · · · (x− gj−1)(x− gj+1) · · · (x− gp). Therefore,

Lj(gi) = 0 when i 6= j and Lj(gi) 6= 0 when i = j.

Let us define

hj(x) =
Lj(x)

Lj(gj)

In this way, the polynomial hj(x) satisfies the conditions established in their def-

inition.

Q.E.D.

Note that the polynomial Lj(x) is defined as a multiplication of factors, where

the factor (x − gj) is not included in the multiplication. Moreover, Lj(gj) is the

polynomial Lj(x) evaluated at gj , thus, it is a constant real value. This allows us to

define the polynomial hj(x) as a division between Lj(x) and Lj(gj).

The previous definitions allow us to propose Theorem 1. Theorem 1 states that

our proposed signal algebra is capable of expressing any sequence transformation from

a sequence in RZN [G] to a sequence in RZN [G].

Theorem 1. Let α : RZN [G]→ RZN [G] be any sequence transformation. Then, there

is a sequence expression γ in the proposed signal algebra such that α(X) = γ(X) for

every X ∈ RZN [G].

Proof. Given two sequences Xi,Xk ∈ RZN [G] such that Xi 6= Xk, then, at least in

one position of those sequences, the elements of the sequences are different. Formally,

xi[r] 6= xk[r] for some r ∈ ZN . Therefore, if xk[r] = gj for some j, from Lemma 1,

hj(xi[r]) = 0 and hj(xk[r]) = 1.

Considering that |RZN [G]| = pN , we define a polynomial function fk(·) for each se-

quence in RZN [G]. Such polynomials are defined in such a way that fk(y0, . . . , yN−1) =

1 when evaluated at the elements of a particular sequence. Note that, the vari-

ables take the following values y0 = xk[0], y1 = xk[1], . . . , yN−2 = xk[N − 2], yN−1 =
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xk[N − 1],. Formally, for k = 1, . . . , m = pN , let fk(y0, y1, . . . , yN−1) be a multivari-

ate polynomial with real variables and real coefficients as previously defined. We

choose the sequence of integers j0, j1, . . . , jN−1 in such a way that gj0 = xk[0], gj1 =

xk[1], . . . , gjN−1
= xk[N − 1]. Let each polynomial function be defined as follows.

fk(y0, y1, . . . , yN−1) = hj0(y0)hj1(y1) · · ·hjN−1
(yN−1)

Please note that when i = k, that is, when fk(·) is evaluated using the elements

of its corresponding sequence,

fk(xi[0], xi[1], . . . , xi[N − 1]) = hj0(xi[0])hj1(xi[1]) · · ·hjN−1
(xi[N − 1])

= hj0(gj0)hj1(gj1) · · ·hjN−1
(gjN−1

)

= 1.

Since hj0(gj0) = 1, hj1(gj1) = 1, . . . , hjN−1
(gjN−1

) = 1.

For i 6= k, we have that hj(xi[r]) = 0 for some j and some r. Consequently,

fk(xi[0], xi[1], . . . , xi[N − 1]) = 0.

Likewise, if we consider the previously defined sequence polynomial function f̄k

evaluated at some sequence Xi, we have,

f̄k(Xi) =

{
1, when i = k,
0, when i 6= k.

Note that 1 is the sequence where all the elements are ones and 0 is the sequence

with only zeros as elements. Naturally, as f̄k is the sequence polynomial version of

fk, f̄k requires for its definition a sequence version of the polynomial hj(x), that is,

h̄j(X).

Using the operations from our proposed signal algebra, the sequence polynomial

function f̄k is defined as follows.

f̄k(X) = h̄j0 (SUM(X ×B0)× 1)× · · · × h̄jN−1
(SUM(X ×BN−1)× 1), (5.16)
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where

h̄j(X) = L̄j(X)÷ L̄j (gj × 1) , (5.17)

with

L̄j(X) = (X−g1×1)×(X−g2×1)×· · ·×(X−gj−1×1)×(X−gj+1×1) · · · (X−gp×1).

(5.18)

Now, let the sequences D1,D2, . . . ,Dm be defined by α(Xk) = Dk. That is, each

sequence Xk is transformed into a sequence Dk by the sequence transformation α.

Then, we define the expression of our proposed signal algebra γ as

γ(X) = (f̄1(X)×D1) + (f̄2(X)×D2) + · · ·+ (f̄m(X)×Dm).

Then, γ(Xk) = 1×Dk = Dk and thus, γ(X) = α(X) for all X ∈ RZN [G].

In this way, we state that a transformation γ exists in our model that is equivalent

to α for any given sequence in RZN [G].

Q.E.D.

Theorem 1 proves that any arbitrary transformation of sequences α(X) can be

expressed by a transformation γ(X) from our proposed model, that is, γ(X) = α(X).

Note that γ(X) only uses four operations, namely, the sequence binary operations ×,

÷, + and −. This means that from a theoretical point of view, three operations from

the our proposed signal algebra are sufficient to express any sequence transformation.

It is important to note that Theorem 1 does not say anything about the algorithmic

efficiency of γ nor how can γ be built given α. Moreover, the proof makes use of

the concept of sequence polynomial which can be seen as particular type of sequence

transformation.

Theorem 1 allows us to state that the proposed model is capable of expressing any

transformation from a finite digital signal into a finite digital signal, where the input
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digital signal takes values from a finite subset of the real numbers. Therefore, our

proposed signal algebra is complete or sufficient in the expression of signal to signal

transformations.
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Chapter 6

SQL Implementation

In this chapter, we focus on how the proposed set of operations can be implemented in

a DBMS. This implementation is very important because it allows us to extend DBMS

functionality. It provides to DBMS the ability to perform not only data management

but also signal processing using SQL statements. For this purpose, we translate the

operations from the proposed model into SQL statements. Moreover, we propose a

new SQL clause named SLIDING, for the implementation of signal processing sliding

windows in RDBMS.

6.1 SQL Implementation

We described in Chapter 3 the methods for storing signals in a DBMS. The data

structure used to store a signal depends on the method chosen. The method for storing

sequences used in the implementation described in this chapter is the Attribute-Store.

That is, we use a relation for storing a signal. The main reason of this choice is that

Attribute-Store allows us to take advantage of DBMS in terms of data integrity,

security and availability. Moreover, using relations allows us to have consistency

between the proposed signal algebra and the implementation, in the sense that, in

both cases, sequences are represented as relations.

Most of the sequence operations can be implemented straightforwardly the SQL

standard’s clauses, allowing us to leverage on the optimizers that query processing

engines already have. Some other operations still require the use of User Defined

Functions (UDF) for their computation in a RDBMS.
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6.1.1 Binary Operations Between Sequences

Since the signal model we propose and the abstract model of RDBMS, are both

based on set theory, we can obtain an implementation from the signal model in a

straightforward manner. We simply use a relation (a set of pairs) to store a digital

signal in a DBMS. This gives us the possibility of using SQL statements to compute

signal operations. Let us begin with the SQL statements to compute binary operations

between signals.

Query 1 (Binary Operations Between Sequences). Let us consider the relations

A〈TimeIndex, Value〉 and B〈TimeIndex, Value〉 representing two signals of the same

length. The binary operations expressed in Equation (4.3), denoted here by OP, can

be implemented by the following SQL query.

SELECT A.TimeIndex,A.Value OP B.Value AS Result

FROM A,B

WHERE A.TimeIndex=B.TimeIndex

ORDER BY A.TimeIndex;

The previous SQL statement works for OP ∈ {+,−,×,÷}. Please note that we can

also use the NATURAL JOIN clause for a more efficient execution. Nevertheless, for the

purpose of this dissertation, we decided to use cross join for a clearer description, as in

the previous query. For the case of maximum (max) and minimum (min) operations,

we can use the CASE expression. For example, to determine the maximum values

between elements of the two signals at each index position, we use the following SQL

query.

Query 2 (Binary max/min Operations Between Sequences). Let us consider the

relations A〈TimeIndex, Value〉 and B〈TimeIndex, Value〉 representing two signals of
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the same length. The binary max operation can be implemented by the following SQL

query.

SELECT A.TimeIndex,

CASE

WHEN A.Value >= B.Value THEN A.Value

ELSE B.Value

END AS Result

FROM A,B

WHERE A.TimeIndex=B.TimeIndex

ORDER BY A.TimeIndex;

The query result is a relation representing a signal whose elements are the maxi-

mum values between the signals A and B at each index position. In the case of the

minimum, the relational operator ”>=” must be replaced by ”<=”.

Note that in the previous queries, the relations A and B store a single signal each.

When the relations store a set of signals instead of a single signal, the queries must be

modified accordingly. The following query is similar to Query 1 but instead of single

signals now the relations store a set of signals of the same length. In case of imple-

menting binary operations between signals of different length, we can homogenize the

lengths of the signals by applying a padding or trimming process.

Query 3. [Binary Operations Between Sets of Sequences] Let us consider the relations

A〈signaId, TimeIndex, Value〉 and B〈signaId, TimeIndex, Value〉 representing two set

of signals of the same length.The binary operations, denoted by OP, can be implemented

for two set of signals by the following SQL query.

SELECT A.signaId, B.signaId, A.TimeIndex,A.Value OP B.Value AS Result

FROM A,B
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WHERE A.TimeIndex=B.TimeIndex

ORDER BY A.signaId, B.signaId,A.TimeIndex,;

Query 3 implements the binary operation OP between two sets of signals. Each

signal of the relation A is paired with every signal in relation B. The output of the

query will be all the resulting sequences of the binary operation between every combi-

nation of signals, computed at every time position. In general, we can implement any

binary operation between sets of signals following a similar approach to the previous

query.

6.1.2 Operations Between Sequences and Scalars

Similar to the previous query, the implementation of operations between sequences

and scalars can be expressed using SQL code.

Query 4 (Binary Operations Between Sequences and Scalars). Let us consider the

relation A〈TimeIndex, Value〉 representing a signal and a scalar constant denoted

by S. The SQL query for the operations OPS ∈ {+,−,×,÷} which are expressed by

Equation (4.9) and Equation (4.10) can be implemented as follows.

SELECT A.TimeIndex,A.Value OPS S AS Result

FROM A

ORDER BY A.TimeIndex;

For the operations max/min between sequences and scalars, we can use a similar

approach as used in Query 2. In the case of exponentiation (ˆ), the function POWER

is available as part of the SQL:2003 standard [17].
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Query 5 (Exponentiation). Let us consider the relation A〈TimeIndex, Value〉 repre-

senting a signal and a scalar constant denoted by S. The POWER function can be used

to implement exponentiation as follows.

SELECT A.TimeIndex,POWER(A.Value,S) AS Result

FROM A

ORDER BY A.TimeIndex;

The operation logk can be obtained by using logk(a) = loge(a)
loge(k)

which can be imple-

mented using the function LN from the SQL:2003 standard.

6.1.3 Unary Functions over Sequences

The list of numeric (scalar) functions in the current SQL standard is limited in quan-

tity. This kind of functions can be used to compute Unary Functions over Sequences

from the signal model. The functions ABS, MOD, CEIL, FLOOR, and SQRT are some of

the functions included in such list. For instance, the computation of the absolute

value of each element value of a signal A can be obtained using the following query.

Query 6 (Absolute Value). Let us consider the relation A〈TimeIndex, Value〉 repre-

senting a signal. The absolute value of each element of the signal stored in the relation

A can be implemented as follows.

SELECT A.TimeIndex,ABS(A.Value) AS Result

FROM A

ORDER BY A.TimeIndex;

Other types of functions, such as trigonometric functions, are not part of the

current SQL standard [18]. Nevertheless, if a given numeric function is not defined
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in a DBMS, since the standard SQL:1999 [16] it is possible to utilize a User Defined

Function (UDF), allowing users to create their own functions. Therefore, any unary

function over sequences can be created following the SQL standard by means of an

implementation using UDFs.

A UDF is basically a program that is executed on a DBMS. It performs some

operation based on an input and returns a single or multiple results [7]. This re-

sult is typically a tuple or a relation. The UDFs can be written in many different

programming languages and they use any kind of control structures that the lan-

guage provides as well as any SQL operation that is available in the DBMS. This

flexibility allows UDFs to perform any type of task, even tasks that are not directly

related to SQL. UDFs once compiled can be executed in any ”SELECT” statement.

There are two main classes of UDFs, scalar and aggregate. Scalar UDFs take one or

more parameters values and return a single value, producing one value for each input

tuple. Aggregate UDFs return one row for each distinct grouping of column value

combinations and a column with some aggregation [64].

6.1.4 Logic Operation over Sequences

A logic operation over a sequence can be implemented with a CASE expression which

is part of the SQL standard since SQL-92 [15]. As an example, let us consider a

situation where we are interested in finding the position of each value in a signal A

that is greater than a scalar K. We can figure out this and obtain a result signal

with 1 at each position where this condition satisfied and 0 elsewhere by using the

following SQL statement.

Query 7 (Logic Operation). Let us consider the relation A〈TimeIndex, Value〉 rep-

resenting a signal. The elements of the signal greater than a scalar K can be found
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implementing the following query.

SELECT A.TimeIndex,

CASE

WHEN A.Value > K THEN 1

ELSE 0

END AS Result

FROM A

ORDER BY A.TimeIndex;

6.1.5 Aggregate Functions over Sequences

The aggregate functions of maximum (MAX), minimum (MIN) and sum (SUM),

can be implemented by the functions MAX, MIN, and SUM, respectively. These functions

are included in the SQL-92 standard. Other aggregate functions included in such SQL

standard are AVG and COUNT. Let us denote AGG ∈ {MAX, MIN,SUM, AVG, COUNT}. The

implementation of these operation is shown in the following query.

Query 8 (Aggregate Function). Let us consider the relation A〈TimeIndex, Value〉

representing a signal. An aggregate function over a signal can be implemented as

follows.

SELECT A.TimeIndex, AGG(A.Value) OVER (PARTITION BY NULL) AS Result

FROM A

ORDER BY A.TimeIndex;

Aggregate functions require to be accompanied by the OVER clause in order to

define groups of tuples based on attributes. In Query 8 only one signal is stored

in relation A. In such case, the OVER (PARTITION BY NULL) is used. When the
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relation stores a set of signals instead of a single signal, the OVER clause must specify

attributes to define a partition. The following query implements an aggregate function

on a relation that stores a set of signals of the same length.

Query 9. [Aggregate Function on Set of Sequences] Let us consider the relation

B〈signaId, TimeIndex, Value〉 representing a set of signals of the same length where

the attribute signaId identifies each signal. The aggregate functions, denoted by AGG,

can be implemented by the following SQL query.

SELECT DISTINCT B.signaId, AGG(B.Value)

OVER (PARTITION BY B.signaId) AS Result

FROM B

ORDER BY B.SignaId;

Query 9 implements an aggregate function on relation B representing a set of

signals. The output of the query will be all the aggregate results from each signal.

This query makes us of the clause DISTINCT that allows us to return only the aggregate

result of each distinct signaId.

In particular, the product (Π) aggregate function described in Section 4.2 is not

currently part of the SQL standard. Nevertheless, this aggregate function and other

custom made aggregations can be implemented in a DBMS because the SQL stan-

dard allows users to create their own aggregate functions by means of User Defined

Functions.

6.1.6 Indexing Transformations over Sequences

The process of rearranging the positions of the elements of a sequence can also be done

by using a UDF. Nevertheless, simpler rearrangements can be obtained using regular
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SQL statements, like the reflection transformation mentioned in Definition 4.27. The

following query shows the implementation of a reflection rearrangement.

Query 10 (Reflection). Let us consider the relation A〈TimeIndex, Value〉 represent-

ing a signal. A reflection rearrangement of the signal can be obtained implementing

the following query.

SELECT -1 + ROW_NUMBER() OVER (ORDER BY A.TimeIndex DESC),

A.Value AS Result

FROM A;

Here, we used the ROW_NUMBER() OVER() clause. This clause allows us to display

the row number of the resultant relation. The operation -1 + ROW_NUMBER() is needed

to adjust the numbering to start from 0. If the relation A stores more than one signal,

with a schema A〈signaId, TimeIndex, Value〉, the OVER clause must be modified

accordingly and obtain all signals reflected. That is,

OVER (PARTITION BY signaID ORDER BY A.TimeIndex DESC).

More sophisticated rearrangements can be accomplished using a UDF. For in-

stance, let us define a UDF named Rearrangement(input signal) which is described

using Algorithm 1.

Algorithm 1: Indexing Operation Algorithm

Input: Sig Input Signal
Output: Transformed Sequence Nseq

1 pos← 0;

2 while pos < Length(Sig) do
3 Newposition← Rearrangement(pos);
4 Nseq[Newposition]← Sig[pos];
5 pos← pos+ 1;

6 end while

7 return Nseq;
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Algorithm 1 works as follows. The algorithm takes a signal (Sig) as input. Then,

an indexing transformation is applied at each position using Rearrangement(pos).

The new index is assigned to Newposition. Afterwards, the value of Newposition is

used to assign the element Sig[pos]) to Nseq[Newposition]. The output is the new

transformed sequence Nseq. The user defined function implementing Algorithm 1,

using signal A, can be used in an SQL query with the following syntax.

Query 11 (Rearrangement using a Function). Let us consider the relation A with

a schema A〈TimeIndex, Value〉 representing a signal. A rearrangement of the signal

can be obtained implementing the UDF Rearrangement using following query.

SELECT Rearrangement(A.TimeIndex) AS NewTimeIndex, A.Value

FROM A

ORDER BY NewTimeIndex;

The function Rearrangement transforms each index position into a new position.

Therefore, the tuples obtained from the query consist of the new position and the

value associated to it. Finally, the ORDER BY arranges the following tuples using the

new positions.

Let consider the case where the old and new positions are stored in a relation.

For instance, a relation with a schema R〈TimeIndex, NewTimeIndex〉. In such case,

a query to rearrange the index position of a signal stored in a relation A according

to the relation R can be implemented as follows.

Query 12 (Rearrangement using a Relation). Let us consider the relation A with a

schema A〈TimeIndex, Value〉 representing a signal and a relation R with a schema

R〈TimeIndex, NewTimeIndex〉 that establishes an indexing transformation. A re-

arrangement of the signal using the relation R can be obtained implementing the

following query.
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SELECT R.NewTimeIndex, A.Value

FROM R,A

WHERE A.TimeIndex=R.TimeIndex

ORDER BY R.NewTimeIndex;

The relation R can be thought of as an equivalent representation of the function

Rearrangement. The transformation is here accomplished by a cross join between

relations R and A.

6.1.7 Sequence Processing Operations

The task of implementing a processing operation in a DBMS requires a User Defined

Function (UDF) and an array structure in addition to the stored input signal. That

is, one of the sequences, the pattern sequence, must be stored using the Tuple-Store

method. The reason for using the Tuple-Store instead of the Attribute-Store for

storing the pattern sequence is due to a limitation of the DBMS’ on the use of the

OVER clause. Specifically, the OVER clause can only be applied on attributes that

share the same windowing definition specified by the clause. It is not possible to

apply the OVER clause to two or more attributes when these require different window

definitions. This limitation impedes to join groups or windows of tuples from two

different attributes and implement a function using the groups of both attributes.

In order to avoid this limitation we need to store one of the sequences, in this case

the pattern sequence, as an array data type. This allows us to apply an operation

between the array sequence and the input sequence stored as a relation. In the rest

of this section, we describe the implementation of a processing operation by a UDF,

using an array structure to store the pattern sequence and a relation to store a input

sequence.
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Let us consider the relations A〈TimeIndex, Value〉 and P〈Sequence〉where the rela-

tion A represents the stored digital signal and the relation P is used to store a pattern

sequence using an array data type. We define a UDF named Processing(input signal,

pattern sequence), which is a general function to implement a processing operation on

stored signals. Its arguments are the input signal and the pattern sequence. Basically,

the UDF Processing performs a binary operation between the sequences followed by

an aggregate function. In order to perform the processing operation, we make use of

the OVER clause. The OVER clause allows us to define an sliding window and is part

of the standard since SQL:1999. The arguments of the OVER clause must be modified

accordingly to a specific processing operation. In this particular case, at each row, a

window is created using the option ROWS BETWEEN from the CURRENT ROW including

the FOLLOWING Length(P.sequence) rows. The value Length(P.sequence) is the

length of the pattern sequence stored in attribute P.sequence and is used to specify

the size of the sliding window. Naturally it was necessary to provide an ordinal struc-

ture to the window, this is done by the option ORDER BY A.TimeIndex of the OVER

clause. This procedure is described by Algorithm 2.

Algorithm 2: Processing Operation Algorithm

Input: Sig Input Signal,
Pseq Pattern Sequence
Output: Output Element of a Sequence

1 Seq ← Define Sequence(Sig);
2 Bin oper out Seq ← OP (Seq, Pseq);
3 Aggregate oper out← AGG(bin oper out Seq);

4 return Aggregate oper out;

Algorithm 2 works as follows. First, a subsequence (Seq) of a signal (Sig) is

defined (by means of an SQL query which is described below). Afterwards, a binary

operation of sequences OP is performed between Seq and the Pattern sequence (Pseq).
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Then, the resulting sequence (Bin oper out Seq), is reduced to a scalar value by

means of an aggregate function. The scalar result value (Aggregate oper out) is

returned as the output of the function. An abstract view of a similar type of algorithm

is the linear filtering whose expression is the following equation.

X⊗HHH = {(j, w[j]) : w[j] =
∑

(X×Hj), j ∈ ZN}. (6.1)

where X represents the input signal and the pattern is abstracted by the kernel

structure HHH . The following query shows the implementation of Equation (6.1).

Query 13. [Processing Operation] Let us consider the relations A〈TimeIndex, Value〉

representing a signal, and the relation P〈Sequence〉 representing a pattern sequence

stored as an array data type. A User Defined Function (Processing) implementing

Algorithm 2 can be used in a DBMS using an SQL statement with the following syntax.

SELECT A.TimeIndex,Processing(A.Value,P.Sequence)

OVER (ORDER BY A.TimeIndex

ROWS BETWEEN CURRENT ROW AND Length(P.sequence) FOLLOWING)

AS Result

FROM A,P;

Query 13 assumes that just one signal is stored in the relation A and that just one

pattern is stored in relation P . Nonetheless, it is possible expand the SQL statement

for sets of sequences and sets of patterns.

6.2 SLIDING: An SQL Clause Proposal

As described in the previous section, current RDBMS’ supporting the SQL standard

require mixing different storing methods for the implementation of processing oper-

ations between sequences. This is necessary due to the nature of the OVER clause
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operation. Particularly, the OVER clause is limited, given that it can only be applied

on attributes passed to functions as arguments that share the grouping or windowing

definition specified by the clause. That is, the same grouping definition must be ap-

plied to the attributes. For instance, in analytic functions that require two or more

attributes as arguments, only one window definition can be specified by the OVER

clause. Moreover, when different windows definitions are required by the attributes

of analytic functions, the current SQL standard does not allow the use of subqueries

as arguments on those functions. In order to deal with these restrictions, it was neces-

sary to use an array structure to store one of the sequences involved in the operation.

In turn, this implies that the signal stored as an array must fit in main memory. This

is a limitation of the current SQL standard regarding its application in processing

signal data. We propose the addition of a new SQL clause that will allow us to deal

with these restrictions without the necessity of mixing different storing methods for

signal data. We consider that this new SQL clause can improve to a great extent the

applicability of RDBMS for management and processing signal data.

A common characteristic of sequence processing operations is that all of them

are based on an sliding window. In particular, a processing operation requires the

definition of an sliding window on the input sequence. Afterwards, an operation is

applied between each defined window and a whole pattern sequence. However, due to

the limitation of the current SQL standard, we cannot implement an sliding window

using two sequences stored as relations. In order to avoid using different data types to

store sequences, we propose the addition of a new SQL clause. This clause, SLIDING,

will allow us to use only one storing method (Attribute-Store) for signal data in

a DBMS. In order to compute a processing operation, an sliding window must be

defined on an input sequence stored as a relation. This can be done using the regular

OVER clause. Moreover, each window created by the OVER clause must interact with a
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pattern sequence, also stored as a relation. In this step is where the new SQL clause

is required.

Let us illustrate the semantics of the SLIDING clause with an example, as shown

in Figure 6.1. There is a relation L representing the input sequence (a, b, c) with

a schema L〈T, V〉. The pattern sequence (x, y) is represented by relation M with

a schema M〈T, V〉. These relations are depicted in Figure 6.1(a). We start the

description of this example by showing its full implementation on a DBMS, using the

proposed SLIDING clause.

Query 14 (Function Implementation using the SLIDING clause). Let us consider the

relations L〈T, V〉 and M〈T, V〉 representing a pair of sequences. An analytic Function

accepts two attributes as arguments. An sliding window using the two attributes can

be obtained by the following SQL statement.

SELECT L.T, Function(L.V, (SELECT M.V FROM M ORDER BY M.T))

SLIDING OVER (ORDER BY L.T ROWS BETWEEN CURRENT ROW 1 PRECEDING)

FROM L

ORDER BY L.T;

In order to define an sliding window on relation L, the OVER clause is used. In

this case, we use the SQL expression

OVER (ORDER BY L.T ROWS BETWEEN CURRENT ROW 1 PRECEDING).

Here, an sliding window of length 2 is defined. The two rows included in each window

is the current row and the previous row.

In Figure 6.1(b), we describe window partitioning on the input sequence stepwise.

In step 1, there is not a previous row, in such case, a NULL value is appended in

the first window. In step 2, the sliding window moves forward one row defining the
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subsequence (a, b). In step 3, the current row is the tuple 〈2, c〉 and the window

defines the subsequence (b, c). Now, it is necessary to define the sequence represented

by the relation M , as shown in Figure 6.1(d). In the case of processing operations,

the pattern sequence, here represented by relation M , does not require the definition

of window subsequences. Instead, the complete sequence must be defined as a whole.

The definition of the complete sequence is equivalent to the relation obtained from

the following SQL statement and must be executed as a subquery.

Query 15 (Complete Sequece Definition as part of an Sliding Window). Let us

consider the relations M〈T, V〉 representing a sequence. In order to define a sequence

as a whole in an sliding window, we use an SQL statement with the following syntax.

SELECT V

FROM M

ORDER BY T;

The corresponding window-defined subsequences obtained from the sliding window

are depicted in Figure 6.1(c). In the SQL statement, the inclusion of Query 15 as an

argument on the function should have make the sliding window work. That is,

Function(L.V, (SELECT V FROM M ORDER BY T))

OVER (ORDER BY L.T ROWS BETWEEN CURRENT ROW 1 PRECEDING)

Unfortunately, including a subquery as an argument on analytic functions is not

allowed by the current SQL standard. We propose to remove that restriction by

using the SLIDING clause, that is,

Function(L.V, (SELECT V FROM M ORDER BY T))

SLIDING OVER (ORDER BY L.T ROWS BETWEEN CURRENT ROW 1 PRECEDING)
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The SLIDING clause, allows us here to include a subquery as an argument of the

analytic function. Note that the OVER clause is defining an sliding window on relation

L. The corresponding window-defined subsequences obtained from the OVER clause

and the pattern sequence generated by the subquery, become the arguments of the

analytic function as shown in Figure 6.2.

The behavior of the analytic function associated to the OVER clause is modified by

placing the SLIDING clause before the OVER clause, that is,

SLIDING

OVER

( [ <PARTITION BY clause> ]

[ <ORDER BY clause> ]

[ <ROW or RANGE clause> ])

The combination SLIDING OVER() allows the usage of subqueries as arguments of an

analytic function giving the capability of constructing an sliding window operation.

The operation of the OVER clause remains unaltered with respect to its definition on

the SQL:1999 standard.

In the previous section, Query 13 implements a UDF named Processing, built from

Algorithm 2, using an array to store the P sequence. Now, by using the SLIDING

clause, we can now use only relations to store both signals. Moreover, we are able

to implement the same function using a subquery as argument of the user-defined

analytic function Processing. The following query implements the UDF Processing

using the SLIDING clause.

Query 16 (Processing Operation using the SLIDING Clause). Let us consider the

relations A〈TimeIndex, Value〉 representing a signal, and the relation P〈TimeIndex,

Value〉 representing a pattern. A User Defined Function Processing implementing
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Algorithm 2 can be used in a DBMS using an SQL statement with the following

syntax.

SELECT A.TimeIndex,

Processing(A.Value,(SELECT P.Value

FROM P ORDER BY P.TimeIndex))

SLIDING OVER (ORDER BY A.TimeIndex

ROWS BETWEEN CURRENT ROW AND (SELECT COUNT(*)

FROM P) FOLLOWING )

FROM A

ORDER BY A.TimeIndex;

In this example, the window defined by the OVER clause considers ahead rows

from the current row. It uses the subquery SELECT COUNT(*) FROM P to specify the

number of following rows to be considered. Different arrangements of the sliding

window and its relative position to the current row can be defined using the options

included in the OVER clause as usual.
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Chapter 7

Conclusions

In this dissertation, we present a formal data model for the representation of signal

data and the expression of signal analysis algorithms. The main motivation behind

this research project was the need to define a model for digitally storing, managing

and processing ECG signal data. Given this motivation, we considered ECGs as finite

digital signals. Sequences, represented as set of pairs, are used as the abstract objects

to represent digital signals. The proposed model provides a set of operations for the

manipulation of sequences. Both, the formal representation of sequences and the set

of operations can be easily integrated with current relational database systems since

both are based on set theory. We advocate for abstracting digital signals as relations

(set of pairs). Traditionally, signal processing and signal data management have been

addressed separately in different computing platforms. Such an approach is adequate

for small scale data sets but highly inefficient for large scale data. For instance, in a

massive data scenario, processing tasks using the file-system and ad-hoc approaches

cannot be implemented without a complex data management due to the discrepancy

between data size and memory availability. Moreover, data integrity can be threaten

by transferring data from one computing platform to another.

The main contribution of this dissertation is that it provides the capability of

merging signal processing and signal data management into a single data model.

This model provides a clear mathematical notation for signal processing algorithms in

database management systems. This facilitates the process of translating mathemati-

cal equations into lines of code of a programming language. Moreover, its conciseness
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enables the straightforward application of optimization techniques for processing al-

gorithms implemented in database systems. Our proposed model lays the foundations

for large-scale signal data systems, where the tasks of signal data processing and data

management can be accomplished in the same database environment. Furthermore,

we provide evidence that this formal model can easily capture common ECG process-

ing and querying tasks needed for ECG data analysis, such as, noise filtering, feature

extraction and similarity search. Moreover, we describe how the model can be im-

plemented in a DBMS by translating the set operations into SQL statements and

User Defined Functions (UDF). Additionally, we propose a new SQL clause named

SLIDING. We argue that the addition of this new clause to the SQL standard can im-

prove to a great extent the applicability of RDBMS for management and processing

signal data.

Given the demand of database systems capable of managing and analyzing very

large volumes of signal data, we intend to develop the concrete counterpart of the

proposed model. We plan to build an integral system for signal management, process-

ing, and analysis using RDBMS. The operations of the system will be founded in the

signal algebra proposed in this dissertation. We would like to compare the execution

efficiency of the operations implemented in a DBMS against an ad-hoc implemen-

tation using the file-system. Moreover, there are some opportunities to improve the

current model. For instance, it will be of interest to consider multidimensional signals

and investigate to what extent the proposed model in relevant for such types of sig-

nals. Furthermore, we would like to extend the current model to cover the expression

of processing techniques computed via recursion.
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