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Abstract

A correct distribution of resources among a set of investment objects gives investors a high probability

of achieving their objectives. This is very important in modern economy since investors play a crucial role

in financial markets around the world. Approaches in charge of recommending a distribution of resources

must be able to deal with many conflicting objectives and/or criteria. Furthermore, the uncertainty of the

impacts on those objectives and the particular preferences of the investors (including their attitude facing

risk) must be considered in order to obtain satisfactory solutions. Finally, the imperfect knowledge in the

investors’ preferences must be incorporated into the modeling process in order for the approach to be

able to effectively reproduce the investors’ decisions. The purpose of this doctoral thesis is to propose

and validate a comprehensive approach that considers these situations when selecting the distribution of

resources maximizing the impact on the objectives of the investor.

This thesis models the imperfect knowledge in the preferences of the investor, as well as uncertainty

about the impact on the objectives, using Interval Theory. We propose to characterize the solution al-

ternatives to the Portfolio Optimization Problem using probabilistic confidence intervals to identify the

behavior of the investor facing risk. We define an indirect elicitation through an interval-based Prefer-

ence Disaggregation Analysis method in order to obtain an approximation to the real preferences of the

investor. Using these preferences the proposed approach then performs a selection pressure towards the

most preferred solutions from the investor’s perspective in an optimization procedure. We adapt in this

thesis the well-known evolutionary multiobjective optimization in order to deal with parameters defined

as interval numbers.

The approach has been extensively evaluated using the most common benchmarks with synthetic and

real data with in-sample and out-of-sample evaluations. The riskmeasure and the characterization of port-

folios through confidence intervals are evaluated in the context of stock portfolio selection, comparing

the performance of our approach with several benchmarks in real historical scenarios. The results indi-

cate that the proposed approach clearly outperforms the benchmarks and that it is able to satisfactorily

incorporate the behavior of the investor facing risk. Further experimentation showed that our proposal

to build the investor’s preferences allows the approach to reproduce the investor’s decisions with great

effectiveness, in most cases, with more than 99% average effectiveness for portfolios described by up to 12

criteria. A final experimentation showed that using the approximation to the investor preferences allowed

the proposed approach to find solutions that are more preferred than reference solutions.



Resumen

Una correcta distribución de recursos entre un conjunto de objetos de inversión brinda a los inversion-

istas una alta probabilidad de conseguir sus objetivos. Esto es muy importante dado que los inversionistas

juegan un papel crucial en los mercados financieros al rededor del mundo. Los métodos encargados de

recomendar una distribución de recursos deben ser capaces de considerar muchos objetivos/criterios en

conflicto. Además, la incertidumbre del impacto en esos objetivos y las preferencias particulares del inver-

sionista (incluyendo su actitud ante el riesgo) deben ser consideradas con la finalidad de obtener soluciones

satisfactorias. Por último, el conocimiento imperfecto en las preferencias del inversionista debe ser incor-

porado al proceso de modelado para que el método sea capaz de reproducir efectivamente las decisiones

del inversionista. El propósito de esta tesis de doctorado es proponer y validar un enfoque que considera

estas situaciones al seleccionar la distribución de recursos maximizando el impacto en los objetivos del

inversionista.

Esta tesis modela el conocimiento imperfecto en las preferencias del inversionista, así como la incer-

tidumbre sobre el impacto en los objetivos, sobre la base de la Teoría de Intervalos. Proponemos caracteri-

zar las alternativas de solución al Problema deOptimización de la Cartera usando intervalos probabilísticos

de confianza como medida de riesgo y para identificar el comportamiento del inversionista ante el riesgo.

Proponemos una obtención indirecta a través de un Análisis de Desagregación de Preferencias basado en

intervalos con la finalidad de realizar una aproximación a las preferencias reales del inversionista. Usando

estas preferencias el método aquí propuesto es entonces capaz de realizar una presión selectiva hacia las

soluciones más preferidas por el inversionista en un proceso de optimización. En esta tesis adaptamos

la bien conocida optimización evolutiva multiobjetivo con la finalidad de lidiar con parámetros definidos

como números intervalo.

El nuevo método ha sido probado extensamente usando las pruebas más comunes de la literatura con

datos controlados y datos reales en pruebas dentro y fuera de la muestra. La medida de riesgo y la car-

acterización de carteras en forma de intervalos de confianza son evaluados en el contexto de la selección

de carteras de acciones, comparando el desempeño de nuestro enfoque con varios puntos de referencia

en escenarios históricos reales. Los resultados indican que nuestra propuesta supera evidentemente a los

puntos de referencia y que es capaz de incorporar satisfactoriamente el comportamiento del inversionista

ante el riesgo. Experimentación adicional mostró que la obtención de preferencias permite reproducir las

decisiones del inversionista con una gran efectividad, en la mayoría de los casos con más 99% de efec-

tividad promedio para carteras descritas por hasta 12 criterios. Una experimentación final demostró que

el uso de la aproximación a las preferencias del inversionista permitió al enfoque propuesto encontrar

soluciones que son más preferidas que las soluciones de referencia.



Chapter 1

Introduction

1.1 Context

A problem faced by most organizations and individual investors is how to distribute a monetary amount

among a set of investment objects in such a way as to maximize the impact on their objectives. The

process of allocating resources maximizing the impact on the investor’s (decision maker) objectives is

known as Portfolio Optimization, a stage of Portfolio Selection. Portfolio Selection may be divided into

two stages [195]. The first stage begins with observation and experience, and ends with beliefs about the

future performances of investment objects. While the second stage begins with the beliefs about future

performances and ends with the choice of a proportion of resources allocated to each of the investment

objects. Here, we focus on the second stage.

Since the 1970s we have seen an accelerated evolution in several fields of science, such as finance, opti-

mization and decision making. It is due to the evolution in these fields that various researchers have made

significant advances in Information Theory, generating new products and financial services. However,

there is still a collection of challenges that leads to an increasingly large number of papers that consider

• multiple conflicting objectives,

• analysis of the investment objects’ performances,

• selection of the best investment objects,

• risk management,

• the specific risk behavior of the decision maker, and

1
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• the particular preferences of the decision maker.

All this aspects can be considered in the Portfolio Optimization Problem, which is one of the most

addressed problems in Operations Research literature [232,312]. It is a multifaceted problem that poses a

number of interesting algorithmic and modeling challenges (e.g., risk consideration, multiple objectives,

realistic constraints, preferences modeling), and it is relevant in various contexts including the allocation

of resources to financial objects (such as stocks and funds) as well as in the context of non-financial objects

(such as projects). Regarding the allocation of resources to financial objects, Portfolio Optimization plays a

fundamental role in supporting stocks, a type of security that represents ownership in a corporation. Given

that the stock market is one of the most important ways for companies to raise money, it is considered

by some authors as “crucial to the existence of capitalism and private property” [241]. The World Bank

estimates the value of stocks traded worldwide in 2017 over 77.5 trillion USD1 [272].

The problem consists in finding (a “good” approximation to) the best assignment of resources to a fi-

nite set of investment objects in such a way as to optimize the investor’s objectives. Of course, the impact

on these objectives depends on the proportion of resources assigned to each investment object and the

expected impact of such objects. Note that depending on the context, the Portfolio Optimization Problem

is easy to solve. For example if we just want to maximize expected return (cf. Subsection 2.1.1 to see the

definition of return), we simply put as much money as possible into the highest returning investment ob-

ject. The reason that there is some work on this subject is that generally there is a requirement to control

risk, which is better achieved when supporting several investment objects (cf. Section 2.1). Therefore,

distributing a monetary amount among a set of investment objects in order to maximize the impact on

the investor’s objectives requires the estimation of the joint impact produced by the supported investment

objects, as well as the joint risk of not achieving such impact. This is due to the concept of risk diversi-

fication. It is traditionally based on the idea that the riskiness involved in a given investment depends

on the correlation of its constituents, not only on the average riskiness of its separate holdings. Even

when diversification is not too relevant in some scenarios (e.g., when the investment objects behave like

certain so-called stable Paretian distributions) [93], generally, most practitioners agree that a certain level

of diversification is achievable [90]. Thus, the idea of evaluating the distribution of resources in terms

of portfolios is opposed to the belief that investors should invest in the (individual) investment objects

that offer the highest future impact. Furthermore, we assume here that investment objects are correctly

assessed and concentrate on how to select the best portfolio in terms of the investor’s preferences.

Finding the best portfolio implies specifying the proportion of resources to support each investment

1The value of stocks traded is the total number of stocks tradedmultiplied by their respective matching

prices. Only one side of the transaction is considered. Data are end of year values converted to U.S. dollars

using corresponding year-end foreign exchange rates[272].
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object in such a way that the best trade-off among the impacts on the decision maker’s (DM) objectives

is achieved. Thus, the approaches used to find the best portfolio must necessarily consider the DM’s

perspective. However, defining this trade-off is not trivial since it requires the specification of the DM’s

preference model and “the elicitation of a preference model’s parameters frequently comprises some part

of arbitrariness, imprecision, and ill-determination” [97]; thus, the preference modeling has to take into

account imperfect knowledge about the DM’s decision policy [246]. Several lines of thought dealing with

the DM’s preference model have been established in the related literature. From these, multicriteria de-

cision aiding (MCDA) provides a wide range of appropriate methods for choosing, ranking and sorting

(ordinal classification) problematics. However, the aid provided by MCDA is not effective unless the im-

plemented aggregation model appropriately represents the DM’s preferences (implicitly incorporated in

a set of decisions made/accepted by the DM). This does not necessarily mean that such preferences must

be exactly known; rather, it means that a good approximation to the DM’s preferences are required. The

effectiveness in such approximation is usually measured on the basis of its ability to reproduce known

holistic decisions made by the DM.

Another crucial aspect of the approaches used to find the best portfolio is their ability to approximate

to reality. In modern society, many objectives are commonly contemplated when allocating resources

[15,270,309,310]. From all these objectives, the most outstanding one is maximizing profit through the

portfolio’s return [264]; this is sometimes the only objective optimized during the allocation of resources.

The optimization of this objective is particularly difficult since estimating future returns (e.g., from time

series of historical return data) is very challenging; actually, for some authors it is considered as practi-

cally impossible (cf. [48,52,202]). One of the most outstanding arguments in this sense is the one stated

by Merton in [202], who indicated that “attempting to estimate the expected return on the market is to

embark on a fool’s errand”. Conversely, many authors have found empirical evidence of a positive risk-

return trade-off relation supporting the development of methods to construct portfolios (see, for example,

[88,124,126,264,287]). In any case, the high relevance of a correct distribution of resources makes the sci-

entific research about the construction of portfolios a required activity. Throughout this document we

will use illustrative examples of the application of our proposals where the only objective to be optimized

is maximization of the portfolio’s return. However, the reader is advised to consider that such propos-

als can be applied to other situations; for example, Subsection 2.1.2 presents some alternative objectives

commonly optimized when addressing the Portfolio Optimization Problem.

Given the high complexity involved during the estimation of the impact in maximizing the portfolio’s

return, many underlying criteria are often used to describe this objective. This scenario is similar for

all cases where the impact of the portfolios in the objectives can not be exactly known (i.e., for risky

objectives). Therefore, approaches capable to deal with many criteria are imperative in finding the best

portfolio; even in situations where there is only one risky objective as in the maximization of return. In

this particular case, the need for many criteria originates from the DM being unwilling to accept that
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the uncertainty of future returns can be fully encompassed by a few criteria. Such uncertainty is usually

handled by the literature using risk measures from the Probability Theory. However, even in presence of

the same level of risk, two decision makers with different attitudes facing risk might have different levels

of satisfaction. Hence, besides a risk measure, the approaches finding the best portfolios must incorporate

the DM’s attitude in presence of risk during the Portfolio Optimization.

From the tools normally used for Portfolio Optimization, the so-called multiobjective evolutionary al-

gorithms (MOEAs) are the most outstanding ones when realistic constraints are imposed (cf. Subsection

1.2). MOEAs are used to solve problems characterized by having multiple conflicting objectives, problems

with considerably large search spaces and whose solutions require risk management or uncertainty (Sub-

section 2.4.2). Problems for selection of alternatives in the presence of constraints deal with combinatorial

optimization. Several studies have shown that Genetic Algorithms (a type of evolutionary algorithm) can

efficiently find solutions close to the optimum or even optimum for some problems of combinatorial op-

timization. An important advantage of these algorithms is their ability to obtain an approximation to the

Pareto front in a single run [58]. Fernandez et al. [95,96,98] have successfully applied these techniques in

the Project Portfolio Optimization context.

1.2 Problem formalization

We define a portfolio 𝑥 as the vector 𝑥 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛]
⊤, 𝑥𝑖 ∈ ℝ, in the decision space that specifies the

proportions of money to invest in 𝑛 investment objects. The image of a portfolio in the objective space is a

vector that represents the impact on 𝑀 objectives established by the decision maker. Whereas the image

of a portfolio in the criteria space is a vector that represents the impact on 𝑘 criteria underlying the DM’s

original objectives. The Portfolio Optimization Problem is to select the feasible portfolio that maximizes

the impact on 𝑘 criteria (representing non-risky objectives, and underlying risky objectives). Formally:

maximize

𝑥∈Ω

{𝑔(𝑥) = (𝑔1(𝑥), 𝑔2(𝑥),⋯ , 𝑔
𝑘
(𝑥))}. (1.2.1)

Where 𝑔𝑗 (𝑥) is the impact of portfolio 𝑥 on the 𝑗th criterion and Ω is the set of feasible portfolios (set

of portfolios that fulfill the constraints).

Suppose now that there is a maximum number of objects to be supported by portfolio 𝑥 , 𝑁𝑥 , that 𝑦𝑗 = 1

if 𝑥𝑗 > 0 and 𝑦𝑗 = 0 otherwise, and that 𝑙𝑗 ≤ 𝑢𝑗 for some 𝑗 = 1,⋯ , 𝑛. Some common constraints applied to

Problem (1.2.1) are the following:

∑ 𝑥𝑗 = 1 → budget constraint;

𝑥𝑗 ≥ 0 → non-negativity/no short-sales constraint;
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𝑙𝑗𝑦𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗𝑦𝑗 → individual limits;

∑ 𝑦𝑗 ≤ 𝑁𝑥 → cardinality constraint;

𝑦𝑗 ∈ {0, 1};

𝑗 = 1,⋯ , 𝑛.

A concrete classical formulation of the Portfolio Problem is the one stated by Markowitz in Ref. [195]

(Subsection 2.1.1), where the portfolio’s expected return is maximized while its variance is minimized. The

only constraints considered there are the budget constraint and the non-negativity constraint. Following

the results of several research works (e.g., [18,36,259]), it appears that the computational complexity for

obtaining the solution of the classical Markowitz model or by several other of its refinements is much

lower than the one required by models containing some of the rest of constraints presented above [55].

According to [55], “this practical difference in computational complexity is also theoretically justified by

the fact that the classical Markowitz model is a convex quadratic programming problem that has a poly-

nomial worst-case complexity bound, while the other formulations are usually modeled by adding binary

variables, thus becomingmixed integer quadratic programming problems, considerably more difficult that

can not be solved by exhaustive methods”.

1.3 Background

In 1952, the now-called Modern Portfolio Theory was founded by Markowitz in [195]. The only objective

being optimized in that work is the maximization of the portfolio’s return. The main contribution of

Markowitz’s work was the formalization of the Portfolio Optimization Problemwith the argument that for

any two portfolios with the same expected return, the decision maker prefers the portfolio with the lowest

risk2. This proposal has been the main idea in most theoretical research on the Portfolio Optimization

Problem, and it is still active since it is sometimes used as a classical benchmark. However, its application

in practice has been rather scarce due mainly to some relevant limitations (Subsection 2.1.2).

Several authors have proposed different alternatives to overcome the limitations of the mean-variance

model. For example, Markowitz proposed in [196] to substitute the variance for the semi-variance. In this

way, some drawbacks related to the variance as the risk measure are discarded from the model. Nonethe-

less, other limitations continue present, such as a poor modeling of the DM’s attitude facing risk. Robust

optimization [32,266] has been applied by some authors (e.g., [115,162,233]) with the intention of solving

2Although some authors refer to uncertainty and risk as synonyms, in this work we will treat the

concept of risk as the uncertainty that negatively affects the decision maker.
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some problems caused by uncertainty of the impacts on the objectives. Robust optimization implicitly

considers that these impacts have been estimated with errors and uses an interesting concept called un-

certainty set to protect the results of the approach against the worst scenarios. So, the resultant portfolio

tends to be more stable and less sensitive to changes of the approach’s estimations (cf. [88]). Nevertheless,

such protection could be considered by the DM as too pessimistic and can result in under performance of

the portfolios when the estimated values tend to the “true” parameter values and/or in situations where

the investment objects returns in the portfolio tend to grow. With respect to the risk of not achieving

the portfolios’ expected returns, some authors have proposed to incorporate higher statistical moments,

such as skewness and kurtosis, in order to better describe the probability distribution of the portfolio’s

return (e.g., [76,130,252,256]). However, the incorporation to the model of the DM’s risk attitude using

such statistical specific-knowledge tools is too complicated. To avoid this limitation, some authors have

used probabilistic quantiles to provide valuable information to the DM (see e.g., [20,126,152]). From these,

Greco et al. propose in [126] to explicitly use quantiles as criteria to maximize. Such approach can deal

with virtually any probability distribution, consider higher statistical moments and use many quantiles in

order to better describe the probability distribution of the portfolio’s return. However, in the pursuit of a

better description of the probability distribution, the quantity of criteria could be so high that it exceeds

the cognitive capacity of the DM (cf. [207]).

On the other hand, information about the DM’s preferences can be obtained either directly or indi-

rectly. In a direct elicitation method, the DM, generally in collaboration with a decision analyst, is in

charge of making a direct setting of the parameter values of the preference model. The direct elicitation

approach has been considered as less adequate for elicitation or assessment purposes (see, for example,

[47]). Some arguments against direct elicitation are the following: i) the preference model’s parameters

are meaningless as long as the multicriteria aggregation procedure in which they are used has not been

specified; ii) the holistic information provided by the DM’s judgments when she/he compares pairs of

actions, or assigns actions to classes, is more suitable and valid; iii) the DM may not be accessible (e.g.,

the CEO of a multinational company) or may be an ill-defined entity (e.g. a heterogeneous group); iv) the

DM usually has difficulties to explicitly specify numerical parameters and the time and cognitive effort

required to do so may be inhibitory. Indirect elicitation approaches have been used for decades to build

functional or utility decision models (e.g., [156,226,268]). Nevertheless, using indirect elicitation methods

can not avoid certain imperfect information in setting the model’s parameters. According to Roy et al., in

Ref. [246], this imperfect knowledge must be taken into consideration by any approach modeling the DM’s

preferences.

Finally, since the 1990s, an increasing number of works have proposed the application of MOEAs to

address the Portfolio Optimization Problem. For example, Lin and Gen [182] use the Markowitz model as

a basic mathematical model, maximizing return and minimizing risk. In their work, they argue to have

proven the reliability and efficiency of genetic algorithms in the optimization of stock portfolios. Shoaf
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and Foster [261] applied genetic algorithms to Markowitz’s portfolio selection problem and found that,

under certain assumptions, the temporal complexity of the genetic algorithms approximates to𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛).

The results obtained are interesting and confirm the efficiency of the genetic algorithms due to their rapid

convergence towards the best solutions since the first runs of the algorithm and their satisfactory calcula-

tion time. Saborido et al. [250] compare the results of three genetic algorithms in addressing a constrained

three-objective optimization problem in order to analyze the efficient portfolios which optimize the three

criteria simultaneously. From the genetic algorithms used in the comparison, the so-called multiobjec-

tive evolutionary algorithm based on decomposition (MOEA/D) has been the basic technique for several

works (e.g., [296]) and a common benchmark to contrast results (e.g., [177,210,250]). The version of this

algorithm using Differential Evolution, MOEA/D-DE, has also been applied in the context of the Portfolio

Optimization Problem (cf. [54]).

1.4 Research questions

Given the discussion presented in the previous sections, we enumerate the following research questions

as, from our perspective, the most relevant unanswered questions in the related literature.

1. How to manage risk in the objectives whose impacts generated by the portfolios cannot be exactly

known, in such a way as to incorporate the decision maker’s attitude during Portfolio Optimiza-

tion?

2. How to model the decision maker’s preferences in such a way that the proposed approach can

reproduce his/her holistic decisions?

3. How to select the portfolios that are more preferred by the decision maker when many criteria are

considered?

1.5 Overall objective

To propose and validate an approach that addresses the Portfolio Optimization Problem finding portfolios

that are most preferred by the decision maker.

1.6 Specific objectives

i. To propose an appropriate way to model the DM’s attitude facing risk.
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ii. To create an elicitation model that builds the decision maker’s preferences considering his/her im-

perfect knowledge.

iii. To consider the imperfect knowledge in the preferences of the decision maker during the search for

the best portfolio.

iv. To ensure that the approach has the capacity to handle many criteria.

v. To improve the selective pressure towards the DM’s most preferred portfolios.

1.7 Methodological proposal

We show here the sequence of steps of our approach, which depends on three basic pillars: Uncertainty

Management, Multicriteria Decision Aiding and Multiobjective Evolutionary Optimization. Figure 1.1

shows this sequence of steps.

Figure 1.1: Proposed methodology

Portfolio Optimization context. Here, some of the inputs required by the proposed approach must

be provided. These inputs are the resources that will be allocated to the (finite) set of assets or investment

objects to be supported, the objectives that the decision maker wants to optimize and the constraints that

must be fulfilled during the optimization. The approach also requires a set of reference holistic decisions

made/accepted by the decision maker in order for the approach to obtain an approximation to his/her

system of preferences.

Uncertainty management. Our proposal uses probabilistic confidence intervals as underlying crite-

ria to the objectives whose impacts are not exactly known (risky objectives). Such characterization allows

the investor to consider not only the expected impact of the portfolios but also the risk of not obtaining

that expected impact. This approach identifies the behavior of the investor when facing risk, and provides

her/him aid depending on her/his own behavior facing risk.

Multicriteria decision aiding. Here, we use an indirect elicitation method to infer the decision

model’s parameter values from holistic decisions provided by the DM. Our proposal is to implement
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regression-like methods to create a decision model as consistent as possible with the set of reference

(training) decisions made/accepted by the DM so her/his decisions can be reproduced.

Multiobjective evolutionary optimization. Portfolio Optimization is performed on the basis of one

of themost outstandingmultiobjective optimization approaches, the so-calledmultiobjective evolutionary

algorithms (MOEAs). To the best of our knowledge, MOEAs have not been used in the context of Interval

Theory except in Refs. [23,264]. In this work, some MOEAs have been enhanced so that they can deal

with alleles and fitness values described as interval numbers.

1.8 Hypothesis

This work is based on the following hypothesis:

H.1 The proposed approach builds portfolios that are more preferred by the decision maker than the

reference portfolios.

1.9 Document structure and expected contribution

We close this chapter by outlining the thesis organization. In doing this, we also underline the proposed

research’s novelties and contributions to advance in answering the questions raised above.

Chapter 2. The fundamental background material and notation are presented in Chapter 2, which is

divided into five parts. In the first part, Section 2.1, we present what we consider the most relevant aspects

of Portfolio Optimization. We start there by providing the classical formulations of Modern Portfolio The-

ory (MPT). Later, we mention some alternative approaches and objectives defined beyond the MPT. After

that, we describe and discuss some common uncertainty management techniques. Finally, we provide a

typical application of the Portfolio Optimization Problem, the optimization of stock portfolios, and some

ways to evaluate individual stocks and stock portfolios. In the second part, Section 2.2, the basic ideas of

the so-called Interval Theory are presented; this theory contains one of the main concepts used in this

thesis, the interval number. In Section 2.3, the multicriteria problems and processes are revised. There,

we start by providing some basic definitions. Later, we revise the main schools of decisions, namely, the

normative and relational approaches. This section provides a detailed description of an approach capa-

ble of modeling the investor’s preferences considering uncertainty, vagueness, and/or ill-determination,

the so-called interval-based outranking approach. Finally, we address the issue of how to elicit the DM’s

preferences, and focus on the so-called Preference Disaggregation Analysis. In Section 2.4 we describe in
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a general way the type of meta-heuristics most used in the literature related to Portfolio Optimization,

the Evolutionary Algorithms. We detail there the characteristics of what is considered the most outstand-

ing multiobjective Evolutionary Algorithm based on decomposition, MOEA/D, and revise the literature

related to preference-based Evolutionary Algorithms. In the last part of this chapter, Section 2.5, Com-

pensatory Fuzzy Logic is presented as a logical model that allows modeling decision-making processes.

That section focuses on Compensatory Fuzzy Logic based on the geometric mean, which presents several

interesting properties.

Chapter 3. Chapter 3 presents our contributions on managing uncertainty on the impacts of risky

objectives. Particularly, we follow the tendency in the literature and assume that an approximation to the

probability distribution of the impacts can be obtained. We propose to (partially) characterize portfolios

through confidence intervals using them as underlying criteria to the risky objectives. This characteriza-

tion allows not only to consider uncertainty of the impact on risky objectives but the decision maker’s

attitude in presence of risk. An extensive evaluation of this way to characterize portfolios and its capac-

ity to incorporate the decision maker’s attitude in presence of risk is performed in the context of stock

Portfolio Optimization.

Chapter 4. We present our proposal to elicit the decision maker’s preferences in Chapter 4. There,

an indirect elicitation procedure based on the so-called Preference Disaggregation Analysis is used. We

consider the imperfect knowledge of the decision maker and assume that arbitrariness, imprecision, ill-

determination and uncertainty are involved in the elicitation procedure. Thus, Interval Theory is used to

model the values of the decision parameters representing the DM’s preference model. We indirectly elicit

these values from holistic decisions made/accepted by the decision maker. Moreover, with the goal of fur-

ther simplification of the DM’s work, the only information that she/he has to provide is a set of portfolios

assigned to some preferentially ordered categories. From this assignments, the proposed approach is able

to infer binary preference relations between pairs of portfolios; and, by minimizing the inconsistencies

with these inferences, eventually it finds a preference model through which it is possible to effectively re-

produce the DM’s decisions. Such effectiveness is analyzed in-sample and out-of-sample with portfolios

characterized by up to twelve criteria.

Chapter 5. In Chapter 5, we use Fuzzy Logic and the approximation to the DM’s preferences to

aggregate the impacts on the criteria (underlying both risky and non-risky objectives). The approach

uses the decision maker’s preferences to create a selective pressure towards the most preferred portfolios.

This way, the complexity of the DM’s final decision is reduced (above all) when there are many criteria

in the optimization problem. We assess the proposed approach’s performance by addressing the stock

Portfolio Optimization Problem, where a novel way to use the so-called fundamental and technical analysis



1.9. Document structure and expected contribution 11

is presented to characterize the portfolios.

Chapter 6 The thesis concludes in Chapter 6, summarizing our contributions and presenting future

research directions.



Chapter 2

Theoretical framework

2.1 Portfolio Optimization

Even though maximization of return is the only objective optimized in the conventional resources alloca-

tion (e.g., [195]), the formulations with multiple criteria are also often mentioned in the literature (see e.g.,

[234,269]). There are two main reasons for this situation [311]. The first is that the decision maker (DM)

makes considerations additionally to return, such as social responsibility, liquidity and the proportion of

resources allocated to certain kinds of objects. That is, instead of being interested only in maximizing

the portfolio’s return, the decision maker may be interested in optimizing several objectives at the same

time. The second reason for using a multicriteria formulation is that, even when contemplating just the

maximization of return, the DM is not willing to accept the assumption that the uncertainty of the actual

return can be fully encompassed in a single criterion. Not even through a “reliable” estimation of the

return as it is the expected value. Consequently, the decision maker wants the selection of the best solu-

tion alternative to be made on the basis of additional estimations such as financial indicators and expert

opinions.

In this section, we first provide an outline of what is considered a pathbreaking in the Portfolio Opti-

mization Problem maximizing the portfolio’s return, Modern Portfolio Theory (MPT), together with some

of its most important limitations. Later, we go beyond MPT and mention some of the most common ob-

jectives alternative to maximization of return. After that, some interesting properties and characteristics

of risk measures are discussed. Finally, a common application of the Portfolio Optimization Problem to

stock portfolios is described.

12
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2.1.1 Modern Portfolio Theory

In 1952, Markowitz’s work laid the foundation in Ref. [195] of what is now known as Modern Portfolio

Theory. The main relevance of Markowitz’s work is the argument that for two portfolios with the same

level of expected return, a rational decision maker must choose the portfolio with the lowest variance.

Several formulations of Markowitz’s proposal can be found in the literature. Let us now provide these

formulations.

Classical formulations

Let Ω ⊆ ℝ
𝑛 be the set of feasible portfolios, then 𝑥 ∈ Ω means that portfolio 𝑥 fulfills the constraints

imposed in the model. The problem then leads to the search for the best assignment of values to the com-

ponents of 𝑥 = [𝑥1,⋯ , 𝑥𝑛]
⊤, where 𝑥𝑗 (generally in [0,1]) is the proportion of resources to be allocated to the

𝑗th investment object. These objects have returns 𝑟 𝑡+1
1

,⋯ , 𝑟
𝑡+1

𝑛
, denoted by the vector 𝑟 = [𝑟

𝑡+1

1
,⋯ , 𝑟

𝑡+1

𝑛
]
⊤.

The return of each object is the percentage change in its value over a given time period; that is

𝑟
𝑡+1

𝑗
=

𝑝
𝑗

𝑡+1
− 𝑝

𝑗

𝑡

𝑝
𝑗

𝑡

,

where 𝑟 𝑡+1
𝑗

is the return of the 𝑗th object in the portfolio, and 𝑝𝑗
𝑡
is the price of the object in time period 𝑡 .

Of course, negative returns are possible. In the case of a stock, its market price can vary both up and

down due to company performance and general market conditions. If one knows the exact value of each

𝑟
𝑡+1

𝑗
, one can easily compute the return of portfolio 𝑥 , 𝑅(𝑥), as (cf. [90]):

𝑅(𝑥) =

𝑛

∑

𝑗=1

𝑥𝑗𝑟
𝑡+1

𝑗
.

Given that the portfolio return depends on future events, it will normally be uncertain. This is the

reason why the expected return is important rather than the actual return. It is therefore assumed that

𝑅(𝑥) follows a density function 𝑓 . And the expected return of portfolio 𝑥 is

𝔼(𝑅(𝑥)) =
∫

𝑅(𝑥)𝑓 (𝑅(𝑥))𝑑𝑅(𝑥).

Moreover, for a given return value 𝛽 , a feasible portfolio is at the efficient frontier if it is a solution to

the following problem:

minimize

𝑥∈Ω

𝜎
2
(𝑅(𝑥)) (2.1.1)

subject to the constraints

𝔼(𝑅(𝑥)) = 𝛽,
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𝑛

∑

𝑗=1

𝑥𝑗 = 1.

Where 𝜎2(𝑅(𝑥)) is the return’s variance of portfolio 𝑥 and 𝔼(𝑅(𝑥)) is its expected value. We refer to this

version of the problem as the formulation of risk minimization.

Equivalently, for a given variance value 𝛼 , a feasible portfolio 𝑥 is at the efficient frontier if it is a

solution to the following problem:

maximize

𝑥∈Ω

𝔼(𝑅(𝑥)) (2.1.2)

subject to the constraints

𝜎
2
(𝑅(𝑥)) = 𝛼,

𝑛

∑

𝑗=1

𝑥𝑗 = 1.

We refer to this version of the problem as the expected return maximization formulation.

We denote by 𝜎𝑖 the standard deviation of 𝑟 𝑡+1
𝑖

, by 𝜌𝑖𝑗 the correlation coefficient of the returns of the

objects 𝑥𝑖 and 𝑥𝑗 (for 𝑖 ≠ 𝑗), and by Σ the matrix 𝑛 × 𝑛 of co-variances of the returns of all the variables, i.

e.,

Σ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎11 𝜎12 ⋯ 𝜎1𝑛

𝜎21 𝜎22 ⋯ 𝜎2𝑛

⋮ ⋮ ⋱ ⋮

𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Where 𝜎𝑖𝑖 = 𝜎
2

𝑖
and 𝜎𝑖𝑗 = 𝜎𝑗𝑖 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 (for 𝑖 ≠ 𝑗). Normally, it is assumed that Σ is positively defined,

i.e.,

[𝑥1,⋯ , 𝑥𝑛]
⊤

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜎11 𝜎12 ⋯ 𝜎1𝑛

𝜎21 𝜎22 ⋯ 𝜎2𝑛

⋮ ⋮ ⋱ ⋮

𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1

⋮

𝑥𝑛

⎤

⎥

⎥

⎥

⎥

⎦

> 0,

for all 𝑥 ≠ 0.

So, for a given portfolio 𝑥 , it is possible to calculate its variance as

𝜎
2
(𝑅(𝑥)) = 𝑥

⊤
Σ𝑥.

It is possible to obtain an alternative formulation of the portfolio problem called risk aversion formu-

lation as:

maximize

𝑥∈Ω

𝑥
⊤
𝜁 − 𝜓𝑥

⊤
Σ𝑥 (2.1.3)

subject to

𝑥
⊤
𝜄 = 1; 𝜄

⊤
= [1, 1,⋯ , 1].
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Where 𝜁 = {𝔼(𝑟1),⋯ ,𝔼(𝑟𝑛)}
⊤ and 𝜓 is an indicator of risk aversion that penalizes the performance of

the solution according to its risk; i.e., 𝜓 is a parameter that represents the specific aversion to risk of

the decision maker, and determines the compensation between the expected return and the risk of the

portfolio.

2.1.2 Beyond Modern Portfolio Theory

Here, we mention some limitations of Modern Portfolio Theory, these are considered as some of the most

relevant limitations in the related literature. We also briefly describe some alternative approaches capable

to outperform some of these limitations.

Limitations of Modern Portfolio Theory

The approach proposed byMarkowitz opened new directions in the way that decisions to solve the Portfo-

lio Optimization Problem are taken and modeled. However, today more than 60 years after its publication,

this approach is used considerably more in theory than in practice [162]. This is due to several disadvan-

tages of the model that arise when it is used in practice. Some of the most important limitations of the

mean-variance model are:

• The model assumes normality in the distribution of the portfolios’ returns.

• Variance as a risk measure has some undesirable characteristics.

• The model makes a poor modeling of the decision maker’s attitude facing risk.

The approach proposed by Markowitz assumes that either returns are jointly normally distributed,

or that all DMs only care about the mean and the variance of their portfolios [90]. However, empirical

evidence suggests that distributions of returns typically have heavier tails than those that are implied by

the normal distribution, and are often not symmetric with respect to the mean (cf. [163,208,225,276]).

An alternative is to extend the traditional mean-variance framework by directly incorporating new

objectives that consider, for example, skewness and kurtosis (see [252]). The idea is that a rational DM,

if requested to choose between two alternatives with the same mean and variance, will probably choose

the alternative with the highest skewness and the lowest level of kurtosis (cf. [76,256]). Harvey and

Siddique in Ref. [130] show that skewness may be relevant in the stock Portfolio Optimization Problem.

They establish that if the returns of the stocks exhibit non-diversifiable co-skewness, then the DM would

expect a higher level of return. On the contrary, if there is a positive skewness in the distribution of these

returns, the DM would be willing to accept low expected returns.
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The works of Levy and Markowitz [174] and Kroll et al. [167] reveals that the selection of objects in

a stationary environment using the mean-variance approach results in portfolios that are very similar to

those formed by a direct optimization of the expected utility, and thus they suggest that the highest mo-

ments do not play an important role in practice. However, Cremers et al. [64,65] demonstrate empirically

that there are some probability distributions that are insensitive to the highest moments and, therefore,

the mean-variance approach behaves well when the considered returns follow these distributions. How-

ever, this result does not hold true when the returns do not behave in such a way, making the approach

proposed by Markowitz to perform poorly in these cases.

On the other hand, regarding the uncertainty of not attaining the portfolio’s expected return, some

authors have proposed diverse definitions of risk because different DMs adopt different investment strate-

gies to reach their investment objectives. In a sense, risk is itself a subjective and relative concept [24,33],

which is probably the main characteristic of risk. In turn, this leads us to believe that, even if we can

identify some desirable characteristics that our risk measure should have, this does not ensure that this

risk measure can guarantee solving the problem of representing all DMs’ attitude when facing risk.

The first riskmeasure proposed in portfolio theory to control the risk of a portfolio is variance. Variance

was chosen due to its easy calculation and that, together with the mean of the distribution, it contains all

the relevant information about the returns if they are normally distributed.

Therefore, if we do not make the assumption that returns follow a normal distribution, then using the

variance as a risk measure does not guarantee that we can control the risk of a portfolio. Additionally,

using the variance for this purpose presents several problems, the first of which is that it contemplates the

negative deviation (from the mean) that is not desirable, but also considers the positive deviation, which,

in turn, is desirable. This generates some adverse effects in the mean-variance model. For example, the

model fails to meet some monotonicity properties, such as that the DM using this model can choose an

object that provides less satisfaction than another object. This can happen when an additional unit of

return increases the expected return of a portfolio, causing the dispersion of returns to be greater, which

increases the variance of the portfolio. For example, suppose portfolios 𝑎 and 𝑏 with the following returns.

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

25 25 25 25 25

Table 2.1: Returns of portfolio 𝑎

Although the increase in the expected return of portfolio 𝑏 is desirable, the mean-variance model se-

lects portfolio 𝑎 as the best alternative, since the positive influence of the return of the portfolio 𝑏 is

compensated by its variance.

Fabozzi et al. in Ref. [89] show that decision makers use a variety of risk measures and approaches
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𝑟1 𝑟2 𝑟3 𝑟4 𝑟6

25 25 25 25 26

Table 2.2: Returns of portfolio 𝑏

beyond the traditional framework of Markowitz’s mean-variance. The concept and measurement of risk

have been active areas of research and debate in the last two decades. Some researchers have proposed

new risk measures that consider only negative deviations, among which the so-called value at risk [152]

stands out. This method can be considered as the worst 𝛼% quantile of returns. Although using this new

risk measure is popular, it has several undesirable mathematical characteristics such as non-subaditivity

and non-convexity [240]. This led to the introduction of the so-called coherent risk measures [20], among

which the conditional risk value [240], that can be defined as the average of the worst 𝛼% of the cases,

stands out. These and other risk measures are presented and discussed in Subsection 2.1.3.

Alternative objectives

Jensen [147] argues that the interests of the investor regarding finances should be aggregated into a sin-

gle objective, maximization of the market value. The justification for such an argument comes from the

“impossibility of maximizing in more dimensions and that doing so leaves the investor without an objec-

tive”. The alternative perspective establishes that investors objectives (e.g., in the case of organizations)

must represent the interests of all stakeholders (e.g., employees, customers, suppliers, shareholders, the

community, etc.), instead of focusing only on the shareholders of the organization [108]. An illustrative

example is proposed by Zopounidis et al. in Ref. [312]. Consider an organization such as a bank, whose

operation depends on a wide range of very different and complex processes, including credit management

(global risk management policies, credit rating, loan setting, etc.), the organization of branches, internal

audit and control and relationships management with clients. Inevitably, operational decisions for all

these activities are based on multiple decision criteria (and constraints), even if the overall objective of

the organization is to maximize the wealth of its shareholders.

According to Zopounidis et al. [312], the finances of the organization also acquire a multicriteria value.

For example, Graham and Harvey in Ref. [125] surveyed 392 financial managers of US firms (United States

and Canada) and found that executives rely on practical and informal rules when choosing the capital

structure, focusing mainly on issues such as liquidity of the objects that indicate financial flexibility in the

portfolio, earnings per object and some market indicators such as the recent appreciation of shares prices.

The liquidity of a portfolio consists of the ease/speed with which its objects can be sold. The most

important advantages of liquidity are: i) it allows the DM to take advantage of temporary investment
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opportunities, ii) it offers the opportunity to leave harmful investments, and iii) it provides the ability to

respond promptly to changes in the DM’s behavior facing risk. Moreover, liquidity influences the prefer-

ences of the DM when forming the portfolios. For example, although some foreign objects may represent

lower investment opportunities, they sometimes tend to have larger trading volumes than domestic ob-

jects [114]. This is because the former have desirable liquidity properties that domestic objects do not

have. In fact, Ang et al. [13] showed that non-liquidity increases risk aversion and distorts object allo-

cation. The most reliable measure of liquidity is the volume of objects trading, which is considered in

virtually all financial markets.

On the other hand, since the 2008 crisis, investors tend to select allocation strategies that are increas-

ingly oriented towards social responsibility [279]. The amounts already invested in socially responsible

funds point to the demand for these products. Therefore, it is clear that there are investors with other

preferences, in addition to the classical financial ones. Furthermore, with the existence of agencies that

evaluate the social responsibility efforts of the companies, it is possible to carry out studies to investi-

gate whether the portfolios actually incorporate social responsibility in their operations. According to the

Social Investment Forum [237], “at the start of 2012, in the US, professionally managed assets following

socially responsible investment strategies stood at $3.74 trillion, a rise of more than 486 percent from $639

billion in 1995. Over the same period, the broader universe of assets under professional management in-

creased only 260 percent from $7 trillion to $25.2 trillion”. One way to consider social responsibility and

ethics in the selection of the best portfolio is on the basis of expert’s analyses.

Finally, the need to modify the portfolio structure arises from the changing environment in which the

decision-making process is usually found in the context of the Portfolio Optimization Problem. However,

the frequent change of the investment means a detriment to the real financial gain of the portfolio. In other

words, the optimization strategies are sensitive to the transaction costs required to form the portfolios

[223]. Costs in transactions can be seen as the expenses in which the DM incurs with the purpose of

changing the portfolio structure. Thus, the ideal situation to maximize the final return of the portfolio is

to find a balance between the expected return and the cost of transactions. Themost commonmethodology

to consider this balance is to use the difference between the current portfolio and the “optimized” portfolio.

All these lines of thought show a growing tendency to consider more and more objectives in the portfo-

lio selection process (see [270], [310], [309], [14], [15]). Some examples of the most mentioned objectives

in literature are

• maximization of return [197], [250],

• maximization of social responsibility and ethical considerations [123], [279], [128],

• maximization of liquidity[9], [158], [299],

• maximization of dividends [135],
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• maximization of the return with respect to a reference point [270],

• maximization of the return in different periods of time (short, medium, long term),

• maximization of the amount invested in Research and Development (R&D) [270], and

• minimization of transaction costs[193], [297].

2.1.3 Uncertainty management

During the process of portfolio optimization, the estimation of future events (e.g., forecasting the invest-

ment objects returns) necessarily implies uncertain consequences to the actions performed by the investor.

The consequence of any action is determined not just by the action itself but also by a number of external

factors. These external factors are both beyond the control of the investor and unknown to her/him at the

time of the decision.

Generally, the concepts of uncertainty and risk are considered differently. In the sense of the con-

sequences of the investor’s actions, uncertainty means that the true state (complete description of the

external factors determining the consequences of the possible decisions) is not known before the investor

has to make the decision. While risk is something the investor bears and is the outcome of uncertainty; it

is how much the investor would be damaged if she/he engages in an uncertain action. Thus, there might

be instances where risk and uncertainty are used interchangeably. For instance, suppose a coin-toss game

is played where one has to bet $0.50 and if heads come up one wins $1, but loses everything if tails appear.

The risk here is that one loses everything because the risk is that tails may appear. The uncertainty here is

that tails may appear. Given that tails appear, one loses everything; hence, uncertainty brings with it risk.

Uncertainty is the possibility of an event occurring, and risk is the ramification of such an event occurring

[217].

In the context of the maximization of the portfolio return, we will define a risky portfolio as portfolio

with more than one financial consequence, say 𝑐1, 𝑐2, ⋯, 𝑐𝑛 and, for at least one value 𝑐𝑖 , 0 < ℙ(𝑐𝑖) < 1,

where ℙ(𝑐𝑖) denotes the probability of 𝑐𝑖 occurring. Note that if there is one value such that 0 < ℙ(𝑐𝑖) < 1,

there must be at least one more observation, 𝑐𝑗 , with 0 < ℙ(𝑐𝑗 ) < 1. The total probability must be equal to

1, ∑ℙ(𝑐𝑖) = 1. By this definition, the future value of a risky portfolio may have more than one value 𝑐𝑖
(actually at least two values). In practice, the probabilities are unknown but can be easily estimated.

The DM’s level of risk aversion when selecting portfolios can be characterized by defining an indif-

ference curve. When the objectives are maximization of return and minimization of risk, then this curve

is composed of risk/return pairs that define the trade-off between expected return and risk. That is, it

establishes the increase in expected return that must exist so that the DM can consider that the increase

in risk is worth it, or vice versa: the risk reduction that must exist to consider that a reduction in the
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expected return is worth it. This curve defines a function on the DM’s behavior when forced to make

compensations between risk and expected returns.

The behavior of the DM facing risk can be divided into risk-averse, risk-neutral and risk-taker. Without

loss of generality, we say that a DM is risk-averse when he/she is reluctant to support a portfolio that

has uncertain expected return instead of supporting another with less risk but with possible expected

minor consequences (considering a maximization of the objectives). In terms of expected utility, a DM is

risk-averse if and only if his/her utility function is concave. A DM presents a risk-taker behavior when

his/her preferences tend to select solutions with better expected return rather than the certainty of those

consequences; that is, a DM is risk-taker if he/she prefers to support a portfolio that has certain expected

return instead of supporting another portfolio with expected minor consequences although with greater

certainty. This implies convexity in the utility function of a risk-taker DM. Finally, it is also possible to

define a linear function that represents a neutral behavior of the DM facing risk. We say that a DMpresents

this type of behavior when his/her attitude is not risk-averse nor risk-taker (i.e., the DM is indifferent

between choosing portfolios with the same expected consequences even if one of them represents more

risk).

There is a widely accepted convention that, generally, increasing a portfolio return necessarily exposes

it to more risk. However, how to quantify this risk is not straightforward. This has implied that there is

no risk measure whose use is generalized among investors. Rather, it is common to see new definitions of

risk measures trying to overcome (some of) the limitations of previous measures. We turn next to several

alternative suggestions which have appeared in the financial and economic literature on how to measure

risk related to portfolios.

Risk measures

Let Δ be the set of possible probability distributions of changes in value (risks). A risk measure, 𝜌 assigns

to a risk a real number that represents the degree of risk involved i.e., 𝜌 ∶ Δ → ℝ. We denote the

distributions of changes associated to portfolio 𝑥 by 𝑥 .

It is possible to classify risk measures as belonging to one or more of the following categories:

• Consistent risk measures with respect to stochastic dominance.

• Coherent risk measures.

• Practical risk measures (with respect to the use of resources; for example, the time invested in

implementing and applying them).
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Consistent risk measures with respect to stochastic dominance Consistency of risk

measures is based on the concept of stochastic dominance, which is related to the concept of maximization

of expected non-decreasing or concave utility functions of the type Neumann-Morgenstern [281]. In

particular, first-order stochastic dominance of a portfolio 𝑥 over a portfolio 𝑦 , whose returns are the

random variables 𝑋 and 𝑌 and follow distribution functions 𝐹𝑋 and 𝐹𝑌 respectively, exists if for any

consequence 𝛼 ∈ 𝑆 ⊆ ℝ, 𝑥 generates at least 𝛼 with a probability equal to or greater than the probability

with which 𝑦 does, and for some 𝛼 , 𝑥 generates with a probability higher than 𝑦 a value equal to or greater

than 𝛼 ; i.e., ∀𝛼 : ℙ(𝑋 ≥ 𝛼) ≥ ℙ(𝑌 ≥ 𝛼) and ∃𝛽 : ℙ(𝑋 ≥ 𝛽) > ℙ(𝑌 ≥ 𝛽). This can be denoted in terms of the

cumulative distribution functions of the two portfolios as 𝐹𝑋 (𝛼) ≤ 𝐹𝑌 (𝛼), for all 𝛼 , with strict inequality

at some 𝛼 . This means that the probability of 𝑋 falling below a specified level 𝛼 is smaller than that of 𝑌

falling below the same level. This is equivalent to saying that any DM maximizing expected utility that

prefers more to less always considers 𝑥 at least as good as 𝑦 .

First-order stochastic dominance makes assumptions about the cumulative distribution functions and

requires the DM to prefer more to less; furthermore, it does not allow one to distinguish between two

portfolios with the same mean return. On the other hand, second-order stochastic dominance makes

weaker assumptions about the integral of the cumulative distribution functions but requires the investor

to be risk-averse as well as prefer more to less. Second-order stochastic dominance may occur when

the two portfolios share the same mean return. Portfolio 𝑥 has second-order stochastic dominance over

portfolio 𝑦 if 𝑋 implies a lower risk (it is more predictable) and has an average equal to or greater than 𝑌 .

That is, we shall say that 𝑥 has second-order stochastic dominance over portfolio 𝑦 if:

∫

𝛼

−∞

ℙ(𝑋 ≤ 𝑠)𝑑𝑠 ≥
∫

𝛼

−∞

ℙ(𝑌 ≤ 𝑠)𝑑𝑠 for all 𝛼 and,

∫

𝛽

−∞

ℙ(𝑋 ≤ 𝑠)𝑑𝑠 >
∫

𝛽

−∞

ℙ(𝑌 ≤ 𝑠)𝑑𝑠 for some 𝛽 .

Second-order stochastic dominance is a weaker condition than first-order stochastic dominance and

three situations may rise when comparing two portfolios using these orders of stochastic dominance

[153]:

• Nothing can be said.

• 𝑌 is first- and second-order stochastic dominated by 𝑋 . (Or 𝑋 to 𝑌 .)

• 𝑌 is second-order stochastic dominated by 𝑋 but not first-order stochastic dominated. (Or 𝑋 to 𝑌 .)

If a risk measure provides the same order as stochastic dominance for all non-decreasing utility func-

tions, it is said that the risk measure is consistent with first-order stochastic dominance. Similarly, if a

risk measure provides the same order as stochastic dominance for all concave utility functions, we call

the risk measure consistent with respect to second-order stochastic dominance. The above is assessed
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for arbitrary functions. Since stochastic dominance is only a partial order then it is possible to say that

consistency is a minimum desirable requirement that any risk measure should satisfy [68]. The Portfolio

Optimization Problem often involves only certain characteristics of the portfolios’ return distributions,

such as expected return and risk. In this situation, it is fundamental for the problem to be consistent

with the corresponding relationship of stochastic dominance in order to guarantee that its solution is a

stochastically non-dominated portfolio. The verification of this consistency is reduced to the choice of a

risk measure that is compatible with the respective stochastic dominance relation.

Coherent risk measures After the work of Artzner et al. [20], the measurement of risk took a

relevant turn with respect to traditional techniques. They proposed a collection of axioms for risk mea-

surement in such a way that the techniques that fulfilled these axioms were called coherent risk measures.

Let𝑥 and𝑦 take values from Δ, 𝑎 and ℎ take real values, and ℎ > 0, then 𝜌 is a consistent risk measure

if it is

• Monotone:

𝑥 ≤ 𝑦 ⇒ 𝜌(𝑥 ) ≤ 𝜌(𝑦 )

• Sub-additive:

𝜌(𝑥 +𝑦 ) ≤ 𝜌(𝑥 ) + 𝜌(𝑦 )

• Positively homogeneous

𝜌(ℎ𝑥 ) = ℎ𝜌(𝑥 ), and

• Translation invariant

𝜌(𝑋 + 𝑎) = 𝜌(𝑋 ) − 𝑎.

Monotonicity is a desirable characteristic of 𝜌 since, for example, if two portfolios 𝑥 and 𝑦 have the

same initial value yet 𝑥 always returns more than 𝑦 (i.e.,𝑥 ≤ 𝑦 ), then 𝜌 should reflect this [153].

The sub-additivity property reflects the characteristic that a portfolio built from “sub-portfolios” will

have an amount of risk that is at most the sum of the risks of the separate sub-portfolios. The inequality of

this property becomes equal when the risk of the portfolio depends completely on the sum of the risks of

the sub-portfolios; that is, when the sources of the risks of the sub-portfolios are generated by concurrent

events. In the case of a sub-additive measure, diversification of the portfolio always leads to risk reduction;

while for measures that do not fulfill this property, diversification can produce an increase in risk even

when the partial risks are generated by mutually exclusive events [4].

The property of positive homogeneity indicates that if we multiply everything in our portfolio by the

same amount (and hence the associated distribution of value changes) then the risk should grow by the
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same factor [153]. Positive homogeneity is similar to translation invariability in the sense that the latter

considers the case where we add or substract a fixed proportion from the changes of a portfolio. In such

a case, 𝜌 should change by the same amount.

Below we mention and describe some of the most used risk measures when addressing the Portfolio

Optimization Problem. Of course, the list of techniques described is not exhaustive but it does contain

some of the most common risk measures in the related literature.

• Semi-variance (𝑆)

• Value at risk (𝑉𝑎𝑅)

• Conditional risk value (𝐶𝑉𝑎𝑅) / Average risk value (𝐴𝑉𝑎𝑅) / Expected shortfall (𝐸𝑆)

• Spectral risk measures (𝑆𝑅𝑀𝑠)

• Quantiles of the probability distribution

Semi-variance Markowitz in Ref. [196] argues that the analysis based on the semi-variance (𝑆)

tends to produce better portfolios than those based on the variance (𝜎2) because the DM usually is more

concerned about the performance below the expected return than above it, and came to declare the semi-

variance as “the best measure to quantify the risk”.

Semi-variance is similar to variance, with the difference that the first one considers only the observa-

tions below the mean. In other words, semi-variance looks only for the negative fluctuations of a portfolio.

The semi-variance is the average of the square of deviations of the values lower than the mean. Formally,

if 𝑋 is the mean of 𝑛 returns 𝑟𝑖 then the semi-variance S is defined as:

𝑆 =

1

𝑛

𝑛

∑

𝑟𝑖<𝑋

(𝑋 − 𝑟𝑖)
2

This risk measure has been used in the Portfolio Optimization Problem instead of the variance by

Yan and Li [290] and Yan et al. [291], where the selection of portfolios in a single period is extended

to multiple periods. It is also used by Najafi and Mushakhian [218], Zhang et al. [297] and Giilpinar et

al. [119], incorporating transaction costs. It is possible to show that semi-variance is not a coherent risk

measure

Value at risk The objective of Value at Risk (𝑉𝑎𝑅𝛼 ) [275] is to find an answer to the question what

is the expected loss with an accumulated probability 𝛼 in a time horizon 𝜏? For a cumulative probability

distribution function 𝐹 (⋅), a random variable 𝜔(𝜏 ) representing the return of a portfolio over a period of

time 𝜏 and an accumulated probability 𝛼 , then

𝐹 (𝜔(𝜏 ) ≤ −𝑉𝑎𝑅𝛼 ) = 𝛼,
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hence 𝑉𝑎𝑅𝛼 is defined as

𝑉𝑎𝑅𝛼 (𝜔(𝜏 )) = − inf
𝑥

{𝑥 |ℙ(𝜔(𝜏 ) ≤ 𝑥) ≥ 𝛼)}

For example, suppose a 𝑉𝑎𝑅𝛼 = $1,000.00, with 𝛼 = 0.9 and 𝜏 = 1 month. This implies that it is expected

with a 90% accumulated probability that the portfolio will suffer a maximum loss of $1,000 in a period of

one month; or, equivalently, there is a 10% cumulative probability that the portfolio will suffer a loss of

more than $1,000 in a period of one month. It is common to see values of 𝛼 equal to 0.9, 0.95 and 0.99 in

the literature.

𝑉𝑎𝑅𝛼 is a risk measure often used in finance in general and in the portfolio problem in particular.

Basak and Shapiro [26] developed an alternative version to the mean-variance approach using 𝑉𝑎𝑅𝛼 as

the risk measure of the model. Ghaoui et al. [115] assume that the distribution of returns is not known

precisely, but is a set of distributions, so implementing an optimization maxmin for what they call 𝑉𝑎𝑅𝛼
worst case. 𝑉𝑎𝑅𝛼 worst case is the largest value of 𝑉𝑎𝑅𝛼 given the partial information of the distribution

of the returns. Gaivoronski and Pflug [112] look for a way to approach the historical 𝑉𝑎𝑅𝛼 by means of

a softening function that tries to filter irregularities. They do this in order to decrease the computational

complexity of 𝑉𝑎𝑅𝛼 . Glasserman et al. [120] concentrate on developing efficient methods to calculate the

𝑉𝑎𝑅𝛼 of the portfolios when they present heavy distributions in the tails.

Recent tendency in the related literature indicates a lack of interest of the scientific community mainly

due to lack of capabilities of the measure to fulfill the coherence properties mentioned above. Coherence

is a desirable characteristic in a risk measure. The coherence guarantees certain properties in the risk

measure that are intuitive for the DM. The following example demonstrates that 𝑉𝑎𝑅𝛼 is not coherent

(Example taken from [203]).

Assume the two portfolios, 𝑋1 and 𝑋2, and their corresponding risk evaluated in 10 states of nature

shown in Table 2.3.
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Table 2.3: Risk evaluation through 𝑉𝑎𝑅

State 𝑋1 𝑋2 𝑋1 + 𝑋2

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 1 1

10 1 0 1

VaR 0 0 1

If we calculate 𝑉𝑎𝑅𝛼 , (𝜌), of the portfolio formed with these two “sub-portfolios” with a percentile of

85%, we have

0 = 𝜌(𝑋1) + 𝜌(𝑋2) < 𝜌(𝑋1 + 𝑥2) = 1.

So we would violate the axiom of sub-additivity. This means that the 𝑉𝑎𝑅𝛼 of a portfolio with a number

of sub-portfolios is not necessarily lower than or equal to the sum of the 𝑉𝑎𝑅𝛼 of the sub-portfolios that

compose it.

On the other hand, in many cases it is useful to know something about the distribution of extreme

events. 𝑉𝑎𝑅𝛼 provides only the point at which the loss is expected to occur with a predetermined proba-

bility, and gives no indication of how likely the loss is if incurred.

Moreover, 𝑉𝑎𝑅𝛼 is only compatible with stochastic domination in first order [137].

Conditional value at risk (CVaR) Conditional value at risk (𝐶𝑉𝑎𝑅) also called Average value

at risk (𝐴𝑉𝑎𝑅) and Expected shortfall (𝐸𝑆) is the average of the values that fall beyond the 𝑉𝑎𝑅. 𝐶𝑉𝑎𝑅 is

more sensitive than 𝑉𝑎𝑅 to losses in the distribution tail. It is possible to calculate 𝐶𝑉𝑎𝑅 of portfolio 𝑥 by

the following parametric method:

𝐶𝑉𝑎𝑅𝛼 (𝑥) = −

1

𝛼
∫

𝛼

0

𝑉𝑎𝑅𝛾 (𝑥)𝑑𝛾 .
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𝐶𝑉𝑎𝑅𝛼 is a better risk measure than 𝑉𝑎𝑅𝛼 . Not only it overcomes some limitations of 𝑉𝑎𝑅, but it also

allows one to know how much one can lose on average if the losses exceed the confidence level set by

𝑉𝑎𝑅. Aditionally, it satisfies all the axioms of coherent risk measures.

The minimization of 𝐶𝑉𝑎𝑅𝛼 also leads to near optimal solutions in terms of 𝑉𝑎𝑅 since 𝑉𝑎𝑅 never

exceeds 𝐶𝑉𝑎𝑅. Therefore, portfolios with a low 𝐶𝑉𝑎𝑅𝛼 must have a low 𝑉𝑎𝑅𝛼 as well [240]. On the other

hand, according to Rockafellar and Uryasev [240], when the distribution of return loss is normal, these

two measures are equivalent; that is, they provide the same optimal portfolio. However, for very skewed

distributions, the portfolios provided by both measures may be different.

Krokhmal et al. [166] developed a model for the optimization of portfolios returns with 𝐶𝑉𝑎𝑅𝛼 in

the constraints using historical scenarios and carried out a case study optimizing a portfolio formed by

S&P100 stocks. The constraints of the portfolio with respect to the 𝐶𝑉𝑎𝑅𝛼 were established at different

levels. Andersson et al. [12] examined an approach to optimizing credit risk. Optimization is done by min-

imizing 𝐶𝑉𝑎𝑅𝛼 subject to transaction and returns constraints. The risk distribution is generated byMonte

Carlo simulations and the optimization is solved by linear programming. Acciaio and Goldammer [2] in-

vestigated the case of portfolio optimization with constant proportions over time by minimizing 𝐶𝑉𝑎𝑅𝛼 .

Dhaene et al. [75] investigated portfolio optimization in the classical continuous time style considering

𝐶𝑉𝑎𝑅𝛼 and other risk measures based on quantiles. Abad and Iyengar [1] seek to solve the problem of

the portfolio with multiple constraints in 𝐶𝑉𝑎𝑅𝛼 . In the problem they are dealing with, they optimize the

weighted sum of the return average and the maximum of a set of spectral risk measures.

Spectral risk measures The value of 𝐶𝑉𝑎𝑅𝛼 is the average of the values 𝑉𝑎𝑅𝛼 larger than the

value 𝑉𝑎𝑅𝛼 obtained with a given probability in the tail 𝛼 . If a weighted average is calculated instead of

the simple average of the values 𝑉𝑎𝑅𝛼 , it is possible to obtain a family of risk measures known as spectral

risk measures (SRMs), where 𝐶𝑉𝑎𝑅 is a member. The SRMs are related to the coherent measures of risk

in the sense that they fulfill the four properties highlighted above. One of the main characteristics of the

spectral risk measures is that they relate the level of risk measured with the DM’s risk aversion: since the

SRMs can be seen as a weighted average of the quantiles of a loss distribution, it is possible to establish

the weights of this sum depending on the DM’s aversion to risk.

The spectral risk measures are defined as

𝜌𝜅(𝑋 ) = ∫

1

0

𝑉𝑎𝑅𝑝(𝑋 )𝜅(𝑝)𝑑𝑝,

where 𝜅(𝑝), 𝑝 ∈ [0, 1], is the weighting function also called risk aversion function and is interpreted in the

following way: consider a range [𝑝1, 𝑝2] of probabilities with length 𝑝2 − 𝑝1 = Δ𝑝 ; the weight assigned to

this range is approximately 𝜅(𝑝1)Δ𝑝 .

For the measure 𝜌𝜅(𝑋 ) to be considered consistent, the risk aversion function, 𝜅(𝑝), must be [235]:
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• positive: 𝜅(𝑝) ≥ 0, 𝑝 ∈ [0, 1],

• not-increasing: 𝜅(𝑝1) ≥ 𝜅(𝑝2), 𝑝1 ≤ 𝑝2 (larger losses are multiplied by larger weights), and

• normalized:
∫

1

0

𝜅(𝑝)𝑑𝑝 = 1 (the sum of the weights must be 1).

In addition to the four properties of the coherent risk measures mentioned above, the spectral risk

measures are

• invariants: for all random portfolio returns 𝑋 and 𝑌 with distribution functions 𝐹𝑋 and 𝐹𝑌 , 𝐹𝑋 =

𝐹𝑌 ⇒ 𝜌(𝑋 ) = 𝜌(𝑌 ),

• additonally comonotonic1: for all comonotonic random variables 𝑋 y 𝑌 , 𝜌(𝑋 + 𝑌 ) = 𝜌(𝑋 ) + 𝜌(𝑌 ).

Adam, Houkari and Laurent [5] evaluate risk from the point of view of risk theory, focusing on spectral

risk measures, based on moments and distortion. Subsequently, they apply these ideas in the framework

of the hedge fund portfolio.

A spectral risk measure is always a coherent risk measure, but the opposite is not always true. An

advantage of the spectral measures is the way in which they can be related to the DM’s risk aversion and,

in particular, to a utility function through the weights given to the possible returns of the portfolio [63].

Due to the non-increasing property of the risk aversion function in the spectral risk measures, the

largest losses, which are to the leftmost part in the tail of the return distribution, are multiplied by a

larger weight. Larger losses have greater variability and multiplicate them by the largest weights further

increases the variability of the weighted average calculated by the SRMs. Ultimately, this depends on the

choice of the DM’s risk aversion function and the assumed distribution of the portfolio return. In fact, the

assumptions of the distribution of the portfolio 𝑋 are very important, since they can give rise to SRMs

without limits for some risk aversion functions. An infinite risk measure is not informative for the DM.

In practice, a bad combination of a statistical model and a risk aversion function can generate problems

related to variability in risk estimates. These problems do not exist for 𝐶𝑉𝑎𝑅𝛼 because a finite mean

return of the portfolio guarantees that 𝐶𝑉𝑎𝑅𝛼 is well defined at all the probability levels of the tail. The

problem for spectral risk measures arises from the non-increasing property of the risk aversion function.

Higher losses are multiplied by larger weights, which can result in an unlimited weighted average [235].

Quantiles Greco et al. [126] recently proposed an approach to the portfolio selection based on the

consideration of some significant quantiles of the probability distribution of the returns as criteria to be

maximized.

1Two random variables 𝑋 and 𝑌 are comonotonic if ∀(𝜔1, 𝜔2) ∈ ℝ
2
, (𝑋 (𝜔1) −𝑋 (𝜔2))(𝑌 (𝜔1) −𝑌 (𝜔2)) ≥ 0
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Let 𝑋 be the random variable representing the return of a portfolio, a quantile 𝑞 of 𝑋 is the value 𝑎

such that ℙ(𝑋 ≥ 𝑎) = 𝑞. That is, the quantile 𝑞 represents the value of the variable 𝑋 that marks a limit so

that a proportion of 𝑞 values of the population is greater than or equal to 𝑎.

These quantiles are easily understandable even for a DM without sophisticated financial preparation,

since each quantile simply states the minimum return that a portfolio would give with a corresponding

probability value. While the Markowitz approach solves the problem of the portfolio trough a bi-objective

problem in terms of mean and variance, the approach of Greco et al. [126] solves the same problem

by transforming it into a multicriteria decision problem in which a set of quantiles in relation to some

probability values have to be maximized.

To use these quantiles, Greco et al. [126] propose using an interactive multiobjective optimization

combined with the Dominance Rough Set Approach (DRSA) as the main method to solve the portfolio

selection problem that consists of two phases: the calculation phase and the dialogue phase. In the cal-

culation phase, a sample of the feasible portfolios is calculated and presented to the DM. In the dialogue

phase, the DM indicates which portfolios are attractive to him/her; this binary classification of the portfo-

lios in “good” and “other” is input preference information to be analyzed using Rough Sets, which produces

decision rules related to the conditions of the quantiles with the intention to support “good” portfolios.

Unfortunately, the number of criteria to be optimized using this approach might exceed the cognitive

limitations of the decision maker; above all, when many objectives are stablished by the decision maker.

2.1.4 Stock portfolios

Few human activities have been so exhaustively studied during the past century as the buying and selling

of the so-called corporate stocks. It has attracted the attention of researchers frommany areas due to both

the interesting theoretical challenges and the wonderful possible rewards. In the course of years of stock

market study, two quite distinct schools of thought have arisen, providing two radically different methods

of arriving at the answers to the trader’s problem of what and when. One of these is commonly referred

to as the fundamental analysis, and the other as the technical analysis.

2.1.4.1 Fundamental Analysis

The stock market investor based on the fundamental analysis depends on statistics. She/He examines

the auditors’ reports, the profit-and-loss statements, the quarterly balance sheets, the dividend records,

and the policies of the companies whose stocks she/he has under observation. Such investor analyzes

sales data, managerial ability, plant capacity, and the competition. She/He turns to bank and treasury
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reports, production indexes, price statistics, and crop forecasts, to gauge the state of business in general,

and reads the daily news carefully to arrive at an estimate of future business conditions. Taking all these

into account, the investor evaluates her/his stock; if it is selling currently below her/his appraisal, she/he

regards it as a buy.

The information provided by the fundamental analysis is mainly used in the literature to select com-

petitive stocks. Although this information may be qualitative, it is often generated in the form of ratios of

numerical values taken from the financial statements of the companies. Many works in the literature usu-

ally aggregate these indicators in a global evaluation index through a subjective process that may depend

on the DM decision policy (see e.g., Ref. [287]). Such aggregation is a problem per se.

It is well known that the fundamental analysis can be different for companies with different business

activities; for example, for financial and non-financial companies [194]. Therefore, an exploration of the

most convenient indicators should be used when the fundamental analysis is exploited (e.g., [287]). Some

fundamental indicators that can be used for trans-business companies are shown in Table 2.4 (cf. Refs.

[194,287]).

Table 2.4: Fundamental indicators that can be used for companies with different business activ-

ities.

Indicator Name Definition

𝑖𝑓1 Return on assets Earnings before interest and taxes divided by

total assets.

𝑖𝑓2 Return on equity Net income divided by shareholders equity.

𝑖𝑓3 Earnings Per Share Net income minus dividends on preferred

stocks all divided by average outstanding

shares.

𝑖𝑓4 Dividend yield Annual dividends per share divided by price

per share.

𝑖𝑓5 Price on earnings Market value per share divided by earnings per

share

𝑖𝑓6 Price on book Stock price divided by all total assets minus in-

tangible assets and liabilities.

𝑖𝑓7 Price on sales Share price divided by revenue per share.

𝑖𝑓8 Price on cash Flow Share price divided by cash flow per share
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2.1.4.2 Technical Analysis

The technical analysis studies the market patterns, demand and supply of stocks [3]. It consists of using

price data to create rules and exploit them financially by selecting stocks in accordance with them. If the

rule associated with a technical indicator shows that the price of a stock is likely to rise, the DM should

buy now expecting to sell later at a higher price, thus increasing the return of the portfolio.

Some of the most frequently mentioned technical indicators reported in the literature are (cf. e.g.,

Refs. [19,124,188]): Exponential Moving Average (EMA), Double Crossover (DC), Rate of Change (ROC),

Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), On Balance Volume

(OBV), Bollinger Band (BB), and True Strength Index (TSI). Let us now describe the rule associated with

each of these indicators.

The EMA is one of the simplest technical indicators, where higher weights are assigned to the most

recent data. The EMA for the 𝑖th stock in period 𝑡 , 𝐸𝑀𝐴
𝑖

𝑡
, is defined as (cf., Ref. [188]):

𝐸𝑀𝐴
𝑖

𝑡
(𝑤𝑠) = [𝑝

𝑖

𝑡
− 𝐸𝑀𝐴

𝑖

𝑡−1
(𝑤𝑠)] ⋅ 𝑤 + 𝐸𝑀𝐴

𝑖

𝑡−1
(𝑤𝑠),

where 𝑤𝑠 is the length of the sliding window of the exponential moving average, 𝑤 =
2

𝑤𝑠+1
, and the initial

𝐸𝑀𝐴 (i.e., when 𝑡 = 𝑤𝑠) is calculated as the average of the previous 𝑤𝑠 periods. A value of 𝑤𝑠 = 12 is

commonly used (e.g., Gorgulho et al., 2011). The rule associated with this indicator states that if the price

line crosses above the 𝐸𝑀𝐴 line, then the stock should be supported. Formally (cf. Ref. [124]):

𝑖𝑡
𝑖

1
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝐸𝑀𝐴
𝑖

𝑡
(12) > 𝑝

𝑖

𝑡
∧ 𝐸𝑀𝐴

𝑖

𝑡−1
(12) < 𝑝

𝑖

𝑡−1
,

0 otherwise.

Where ∧ is the conjunction operator.

The DC uses two moving averages (normally, a short one and a large one) and produces a signal when

the shorter crosses above the larger. Normally, a window size of five periods is used for the short line

while the large line uses a window size of 20 periods. Hence, the signalization rule for this indicator is as

follows:

𝑖𝑡
𝑖

2
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝐸𝑀𝐴
𝑖

𝑡
(5) > 𝐸𝑀𝐴

𝑖

𝑡
(20) ∧ 𝐸𝑀𝐴

𝑖

𝑡−1
(5) < 𝐸𝑀𝐴

𝑖

𝑡−1
(20),

0 otherwise.

The ROC represents the proportional difference between the current price of the ith stock and the price

h periods ago (cf., Ref. [19]): 𝑅𝑂𝐶 𝑖
𝑡
=

𝑝
𝑖

𝑡
−𝑝

𝑖

𝑡−ℎ

𝑝
𝑖

𝑡−ℎ

. Positive values in this indicator are desirable. A value ℎ = 13

is commonly accepted [124]:

𝑖𝑡
𝑖

3
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝑅𝑂𝐶
𝑖

𝑡
(13) > 0,

0 otherwise.
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The RSI is a momentum oscillator conceived to measure the relative conditions of the stock in the

market with respect to its overbought/oversold condition. The RSI value for the 𝑖th stock in period 𝑡 is

defined as (cf. Refs. [188,286]):

𝑅𝑆𝐼
𝑖

𝑡
(𝑑) = 1 −

1

1 + 𝑅𝑆
𝑖

𝑡
(𝑑)

,

where 𝑅𝑆𝑖
𝑡
(𝑑) =

∑
𝑑

𝑗=1
𝑈
𝑖

𝑡−𝑗+1

𝑑
/

∑
𝑑

𝑗=1
𝐷
𝑖

𝑡−𝑗+1

𝑑
; ∑𝑑

𝑗=1
𝑈
𝑗

𝑡−𝑗+1
is the sum of the positive returns of stock 𝑖 during

𝑑 periods before the period 𝑡 , and ∑
𝑑

𝑗=1
𝐷
𝑖

𝑡−𝑗+1
is the same sum but with negative returns. It is widely

accepted that 𝑑 = 14 (e.g., Refs. [124,286]). This indicator suggests that the 𝑖th stock should be supported

in period 𝑡 if the 𝑅𝑆𝐼 𝑖
𝑡
value crosses above 30% and the current price is higher than the price of the previous

period (see Refs. [124,188]). Formally:

𝑖𝑡
𝑖

4
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝑅𝑆𝐼
𝑖

𝑡
(𝑑) > 0.3 ∧ 𝑅𝑆𝐼

𝑖

𝑡−1
(𝑑) < 0.3 ∧ 𝑝

𝑖

𝑡
> 𝑝

𝑖

𝑡−1
,

0 otherwise.

The MACD is a combination of EMAs that validates the “convenience” of acquiring a stock through the

comparison with a signaling function. The most common configuration of this indicator uses two EMAs

with 12 and 26 historical periods, 𝐸𝑀𝐴(12) and 𝐸𝑀𝐴(26), to create the 𝑀𝐴𝐶𝐷(12, 26) [19,124,188]. The

MACD for the stock 𝑖 in the period 𝑡 is defined as𝑀𝐴𝐶𝐷
𝑖

𝑡
(12, 26) = 𝐸𝑀𝐴

𝑖

𝑡
(12) − 𝐸𝑀𝐴

𝑖

𝑡
(26). The literature

usually traces another moving average that does not depend on the price of the stocks but depends on

the𝑀𝐴𝐶𝐷
𝑖

𝑡
indicator. This new moving average,𝑀𝑀

𝑖

𝑡
, is used to create a signal line of momentum about

the movement of the prices. The signal line is created as a nine-period EMA of the𝑀𝐴𝐶𝐷
𝑖

𝑡
. The common

strategy associated with this indicator states that when the value of𝑀𝐴𝐶𝐷
𝑖

𝑡
(12, 26) crosses above𝑀𝑀

𝑖

𝑡
(9),

then there is evidence that the stockwill increase in price and that it is advisable to invest in it in the current

period. Thus, we will consider that this indicator suggests support for the 𝑖th stock if 𝑖𝑡 𝑖
5
= 1, where (cf.,

Refs. [19,124]):

𝑖𝑡
𝑖

5
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝑀𝐴𝐶𝐷
𝑖

𝑡
(12, 26) > 𝑀𝑀

𝑖

𝑡
(9) ∧𝑀𝐴𝐶𝐷

𝑖

𝑡−1
(12, 26) < 𝑀𝑀

𝑖

𝑡−1
(9),

0 otherwise.

The OBV assumes that a rising volume might precede a rise on the stock’s price and is calculated as

[124]:

𝑂𝐵𝑉
𝑖

𝑡
=

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑂𝐵𝑉
𝑖

𝑡−1
+ 𝑣𝑜𝑙

𝑖

𝑡
𝑝
𝑖

𝑡
> 𝑝

𝑖

𝑡−1
,

𝑂𝐵𝑉
𝑖

𝑡−1
− 𝑣𝑜𝑙

𝑖

𝑡
𝑝
𝑖

𝑡
< 𝑝

𝑖

𝑡−1
,

𝑂𝐵𝑉
𝑖

𝑡−1
otherwise.

Where 𝑣𝑜𝑙𝑖
𝑡
is the volume (number of shares traded) of the 𝑖th stock in period 𝑡 .

The OBV indicates that the 𝑖th stock should be supported if the value 𝑂𝐵𝑉 𝑖

𝑡
is rising simultaneously
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with price (indicating a clear up trend). Formally:

𝑖𝑡
𝑖

6
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝑂𝐵𝑉
𝑖

𝑡
> 𝑂𝐵𝑉

𝑖

𝑡−1
∧ 𝑝

𝑖

𝑡
> 𝑝

𝑖

𝑡−1
,

0 otherwise.

The BB is a strategy of election with strong positive net results [188]. It is a volatility indicator repre-

sented by the bands generated from an l-day price moving average minus 2 standard deviations of price

changes over the same 𝑙-periods time span:

𝑀𝐴
𝑖

𝑡
(𝑙) =

𝑙

∑

𝑗=1

𝑝𝑡−𝑗+1

𝑙

.

𝐿𝐵
𝑖

𝑡
(𝑙) = 𝑀𝐴

𝑖

𝑡
(𝑙) − 2𝜎

𝑖

𝑡
(𝑙).

Where 𝜎 𝑖
𝑡
(𝑙) is the standard deviation of price changes of stock 𝑖 for the period 𝑡 and its previous 𝑙 − 1

periods.

The rule associated with the BB states that the 𝑖th stock should be supported if in period 𝑡 its price is

simultaneously above 𝐿𝐵𝑖
𝑡
(𝑙) and below 𝑀𝐴

𝑖

𝑡
(𝑙) (to avoid false triggering; cf. Ref. [188]):

𝑖𝑡
𝑖

7
=

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 𝑀𝐴
𝑖

𝑡
(𝑙) > 𝑝

𝑖

𝑡
> 𝐿𝐵

𝑖

𝑡
(𝑙),

0 otherwise.

The TSI is double smoothed with two moving averages to show the trend and specifying, at the same

time, the overbought and oversold conditions Ref. [124]. It can be defined as:

𝑇𝑆𝐼
𝑖

𝑡
(𝑟 , 𝑠) = 100 ×

𝐸𝑀𝐴
𝑖

𝑡
(𝑆) of (𝐸𝑀𝐴

𝑖

𝑡
(𝑟) of 𝑑𝑖𝑓 𝑓 𝑖)

𝐸𝑀𝐴
𝑖

𝑡
(𝑆) of (𝐸𝑀𝐴

𝑖

𝑡
(𝑟) of |𝑑𝑖𝑓 𝑓 𝑖 |)

,

Where 𝑑𝑖𝑓 𝑓 𝑖 is the momentum line which calculates the difference between the current price and the

price observed on the previous period, that is 𝑑𝑖𝑓 𝑓 𝑖 = 𝑝𝑖
𝑗
− 𝑝

𝑖

𝑗−1
for a given period 𝑗.

The literature often uses an EMA of the TSI as trigger: 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑖
𝑡
(𝑚) = 𝐸𝑀𝐴

𝑖

𝑡
(𝑚) of 𝑇𝑆𝐼 𝑖

𝑡
and an oversold

region. Such region indicates that the stock’s price is lower than it should be, and usually is located in

the value -25 of 𝑇𝑆𝐼 𝑖
𝑡
. The rule associated with the TSI states that the 𝑖th stock should be supported if the

𝑇𝑆𝐼
𝑖

𝑡
crosses above 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑖

𝑡
(𝑚) on the oversold region, that is:

𝑖𝑡
𝑖

8
=

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

1 𝑇𝑆𝐼
𝑖

𝑡
(𝑟 , 𝑠) > 𝑇𝑟𝑖𝑔𝑔𝑒𝑟

𝑖

𝑡
(𝑚) ∧ 𝑇𝑆𝐼

𝑖

𝑡−1
(𝑟 , 𝑠) < 𝑇𝑟𝑖𝑔𝑔𝑒𝑟

𝑖

𝑡−1
(𝑚) ∧

𝑇𝑟𝑖𝑔𝑔𝑒𝑟
𝑖

𝑡
(𝑚) ≤ −0.25,

0 otherwise.
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2.1.4.3 Stock indexes as benchmarks

Amarket index is a way of measuring the value of a section of the stock market. More specifically, it is an

aggregated value that is produced by combining various stocks of the market section. Since the market

indexes arise from a mathematical construction, it is not possible to invest directly in them. However, it

is a tool used by investors to describe the market and compare the performance of the portfolios.

There are two streams of thought to create stocks portfolios [124,189,267]: passive management and

active management. The first stream states that “the past movement or direction of return of a stock, or of

the market in general, cannot be used to predict its future movement” [190]. And that in trying, the DM

spends resources that in the long run can be rather detrimental. As a result, “there has been an accelerating

trend in recent decades to invest in passively managed investment funds based on market indexes, known

as index funds” [267]. The goal of these funds is not to outperform the corresponding index, but instead

to track the index as closely as possible by buying each of the stocks in the it in amounts equal to the

weights in the index itself. As index funds try to replicate index holdings, they eliminate the need -and

therefore many costs- for the research involved in active management. This makes indexes one of the

main benchmarks in the selection of stock portfolios (see e.g., [124,181,287]).

On the other hand, active management depends on analytical research, estimations, and the judgment

and experience of the decision maker to form portfolios. The objective of active management is to out-

perform a reference index [124]. It can be done through the incorporation of decision-maker preferences,

estimation of portfolio return (e.g., expected return), measurement of risk of not obtaining the return

estimated (e.g., standard deviation), and the purchase of undervalued stocks (e.g., through financial indi-

cators).

A highly important market index is the Dow Jones Industrial Average, DJIA. The DJIA index contains

the stocks of 30 of the largest companies in the United States.

Following Soe and Poirier [267], the main contraindication of using market indexes as benchmarks

is that the profitability of portfolios is often compared to popular indexes such as DJIA, regardless of

portfolio size or classification of its stocks. Most investors expect to reach or exceed the yields of these

indexes over time. The problem with this expectation is that they are at a disadvantage because they are

not “comparing apples to apples”. That is, there is no guarantee that the characteristics of the stocks in

the portfolio coincide with the characteristics of the stocks contained in the index. We avoid this trap by

incorporating into the portfolio only the stocks of the index being considered as benchmark.
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2.2 Interval Theory

The so-called Interval Analysis Theory was originated independently by Sunaga [274] and Moore [213].

The principal concept of Interval Theory is the interval number. Such a number represents a numerical

quantity whose exact value is unknown. Given this imperfect knowledge about the quantity, a range

of numbers is used to encompass all the possible values that the quantity could obtain. In this way, an

interval number stands for an indeterminate number that takes its possible value within a set of numbers.

Let us consider the quantity 𝜄 whose real value lies between bounds 𝑖− and 𝑖+. The interval number for

such quantity is set then as 𝐼 = [𝑖
−
, 𝑖
+
]. Any 𝑟 ∈ [𝑖

−
, 𝑖
+
] is called a realization of 𝐼 . We can also translate a

real number, 𝑞, into an interval number as [𝑞, 𝑞].

In what follows, let us look at the basic operations of interval numbers. Given the interval numbers

𝐼 = [𝑖
−
, 𝑖
+
] and 𝐽 = [𝑗

−
, 𝑗
+
], the following equations represent the addition, subtraction, multiplication and

division, of 𝐼 and 𝐽 , respectively.

𝐼 + 𝐽 = [𝑖
−
+ 𝑗

−
, 𝑖
+
+ 𝑗

+
],

𝐼 − 𝐽 = [𝑖
−
− 𝑗

+
, 𝑖
+
− 𝑗

−
],

𝐼 × 𝐽 = [min{𝑖
−
𝑗
−
, 𝑖
−
𝑗
+
, 𝑖
+
𝑗
−
, 𝑖
+
𝑗
+
},max{𝑖

−
𝑗
−
, 𝑖
−
𝑗
+
, 𝑖
+
𝑗
−
, 𝑖
+
𝑗
+
}],

𝐼 ÷ 𝐽 = [𝑖
−
, 𝑖
+
] × [

1

𝑗
−
,

1

𝑗
+
].

More recently, Shi et al. [260] proposed a way to determine the order of interval numbers. For instance,

suppose we want to determine the order of 𝐼 = [𝑖
−
, 𝑖
+
] and 𝐽 = [𝑗

−
, 𝑗
+
]. First, we need to find the possibility

of 𝐼 being greater than or equal to 𝐽 . The possibility function proposed in Ref. [260] is given by

𝑝(𝐼 ≥ 𝐽 ) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 if 𝑝
{𝐼 𝐽}

> 1,

𝑝
{𝐼 𝐽}

if 0 ≤ 𝑝
{𝐼 𝐽}

≤ 1,

0 if 𝑝
{𝐼 𝐽}

< 1.

(2.2.4)

Where 𝑝
{𝐼 𝐽}

=
𝑖
+
−𝑗

−

(𝑖
+
−𝑖

−
)+(𝑗

+
−𝑗

−
)
.

Furthermore, if 𝑖+ = 𝑖
− and 𝑗+ = 𝑗

−, then

𝑝(𝐼 ≥ 𝐽 ) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 if 𝐼 ≥ 𝐽 ,

0 otherwise.

Let 𝑖 and 𝑗 be two currently undetermined realizations from 𝐼 and 𝐽 , respectively; 𝑝(𝐼 ≥ 𝐽 ) can be

interpreted as a degree of credibility of the statement “once both realizations are determined, 𝑖 will be
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greater than or equal to 𝑗”. This helps the DM to ensure the robustness of 𝐼 ≥ 𝐽 , that is, to have a strong

belief on 𝐼 being not less than 𝐽 when they are instanced as real numbers [97].

It is easily proved (see [97]) that Equation (2.2.4) fulfills some interesting properties: let 𝐼 = [𝑖
−
, 𝑖
+
],

𝐽 = [𝑗
−
, 𝑗
+
], and 𝐾 = [𝑘

−
, 𝑘

+
], then:

• 𝑝(𝐼 ≥ 𝐽 ) = 0 if 𝑗− > 𝑖+ and 𝑝(𝐼 ≥ 𝐽 ) = 1 if 𝑗+ ≤ 𝑖
−.

• If 𝑗− = 𝑖
− and 𝑗+ = 𝑖

+, it is said that 𝐼 is equal to 𝐽 , denoted as 𝐼 = 𝐽 . Then 𝑝(𝐼 ≥ 𝐽 ) = 0.5.

• If 𝑖− > 𝑗+, it is said that 𝐼 is strictly greater than 𝐽 , denoted as 𝐼 > 𝐽 . Then 𝑝(𝐼 ≥ 𝐽 ) = 1.

• If 𝑖+ < 𝑗−, it is said that 𝐼 is strictly lower than 𝐽 , denoted as 𝐼 < 𝐽 . Then 𝑝(𝐼 ≥ 𝐽 ) = 0.

• When 𝑝(𝐼 ≥ 𝐽 ) > 0.5, it is said that 𝐼 is strictly greater than 𝐽 , denoted as 𝐼 > 𝐽 .

• When 𝑝(𝐼 ≥ 𝐽 ) < 0.5, it is said that 𝐼 is strictly lower than 𝐽 , denoted as 𝐼 < 𝐽 .

• If 𝑝(𝐼 ≥ 𝐽 ) = 𝛼1 ≥ 0.5 and 𝑝(𝐽 ≥ 𝐾 ) = 𝛼2 ≥ 0.5 then 𝑝(𝐼 ≥ 𝐾 ) ≥ min{𝛼1, 𝛼2}.

• If 𝑖 and 𝑗 are respectively the middle points of the confidence intervals 𝐼 and 𝐽 , we have 𝐼 > 𝐽 if

and only if 𝑖 > 𝑗 and 𝐼 = 𝐽 if and only if 𝑖 = 𝑗.

• If 𝑝(𝐼 ≥ 𝐽 ) = 𝛼 > 0.5 then 𝑝(𝐽 ≥ 𝐼 ) = 1 − 𝛼 < 0.5.

Finally, we define the concept of a maximum among a set of interval numbers as follows. Let B be a

set of interval numbers, 𝑏∗ ∈ B is the maximum of B, denoted by max{B}, if and only if 𝑝(𝑏∗ ≥ 𝑏) ≥ 0.5

for all 𝑏 ∈ B.

2.3 Multicriteria decision process

Making a decision consists in accepting or rejecting a potential action and/or performing it in a certain

way. Making a comprehensive decision is rarely a straightforward process; rather, there usually are con-

frontations in successive interactions among stakeholders. It is the playing out of these confrontations

and interactions, under the various compensating and amplifying effects of the stakeholders’ preference

systems, that makes up what we shall call the decision process [244].

There is a special type of decision called strategic decision that can be defined as the one that is “im-

portant, in terms of the actions taken, the resources committed, or the precedents set” [209]. High levels

of uncertainty and negotiations with the stakeholders often characterize strategic decisions. These stake-

holders are actors, individuals or entities who have an important interest in the decision and will intervene

to directly affect it through the value systems which they possess. One of these actors is the so-called de-

cision maker (DM) who is the person or the set of persons for whom or in the name of whom decision
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aiding effort is provided; the DM is responsible of the decision’s consequences. Other important actor in

the decision process is the so-called analyst. The analyst role is to explain, justify, and recommend during

the decision process regardless of her/his own preference system but surely influencing the decision.

The uncertainty involved in making a strategic decision is frequently due to the complexity of real-

world problems, which in turn is due to the dimensionality of the given problem (e.g., the number of

available options and actions) and the nature of the available data which are often imprecise. Particularly,

an important implication of addressing real-world decision-making problems, is the multi-dimensionality

character that requires the consideration of multiple conflicting points of view. Therefore, the decision

process should explore the conflicting nature of the criteria, their trade-offs, the decision makers’ objec-

tives, and the way that the decision model can deal with all these. Moreover, such decision model must

always take into account the preferences of the decision maker. The idea of the optimal decision (optimal

solution to a decision problem) is abandoned for the notion of the “satisfaction of the decision maker”.

We will refer to strategic decisions simply as decisions during the rest of this document.

2.3.1 Basic definitions

We use in this document the term potential action to label what constitutes the object of the decision,

something through which the decision will materialize. As opposed to the term alternative, potential

actions are not necessarily stable (i.e., potential actions can evolve during the decision-making process)

and more than one potential action can be jointly put into operation. We use A to designate the set of

potential actions to consider in a decision-making process.

Each potential action 𝑎 ∈ A can be evaluated through a criterion 𝑔𝑗 (𝑎) reflecting, possibly with a

certain fuzziness, the preferences of one or several actors on a given point of view in such a way that

𝑎 ∈ A is better than 𝑏 ∈ A according to this point of view, without loss of generality, if and only if

𝑔𝑗 (𝑎) > 𝑔𝑗 (𝑏). When the actors of the decision process require to assess the potential actions according to

several points of view, a family of criteria F = {𝑔1, 𝑔2,⋯ , 𝑔
𝑘
} must be used. Such family of criteria must

follow the requirements that lead to the definitions of exhaustiveness, cohesiveness, and non-redundancy

that characterize the concept of a coherent criterion family (see Ref. [245]). The elements of the domain

of a criterion are called scale values, each of them can be characterized for example by a number or a

verbal declaration. To compare two actions according to a criterion, we compare the two values used to

evaluate them. This leads to distinguish between several types of scales, in particular the ordinal and the

cardinal scales. The former is such that the space between two values has no clear meaning in terms of

the difference in preferences. The cardinal scales (interval, ratio, absolute) are numerical scales that give

meaning to value differences, proportions and absolute numbers, respectively. Finally, we consider here

each 𝑔𝑗 (⋅) as a real-valued function.
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2.3.2 Multicriteria decision problems

An multicriteria decision problem consists in elaborate either a mathematical model allowing us to com-

pare potential actions in a comprehensive way or a procedure helping to reflect upon and to progress in

the formulation of comprehensive comparisons between potential actions [244]. With respect to the ob-

jectives of the decision process, three different perspectives corresponding to the following three problem

statements can be identified [242]:

• (P𝛼) Identify the best potential action or select a minimal set of the best potential action.

• (P𝛽) The assignment of each potential action to an appropriate pre-defined class or category.

• (P𝛾 ) Create a ranking of the potential actions which seems to be the most satisfactory according

to a total or partial pre-order.

When several criteria are considered, generally there is not a common optimal point but the best com-

promise solution must be found according to the DM’s preference system. Multicriteria problems are

more complicated to be solved than their mono-criterion counterpart from the DM’s subjectivity point of

view. The decision set of the former can be is expressed by variables that must fulfill certain mathematical

constraints, which separate what is feasible from what is not (the so-called mathematical programming

problems) or by describing a list of potential actions (the so-called discrete decision problems).

Decision problems can be classified according to the level of knowledge about the consequences that

making a decision causes: those in which the consequences of the decisions are supposedly known with

certainty, and the decision problems under risk or uncertainty that correspond to those with results that

are known with little or no precision. The decision under conditions of certainty supposes that each of

the potential actions leads with perfect certainty to the DM to a well-defined consequence. The DM has

a complete knowledge of everything that she/he considers relevant to his problem. The decision under

conditions of “pure” certainty is probably an ideal. In practice there is always a level of imprecision. Some-

times we can neglect or handle imprecision with sensitivity analysis techniques, performing a treatment

similar to the complete certainty model. Decision situations under imprecise conditions are more realistic.

There are situations in which the probabilities of the states of nature are known, and others in which no

information about the states of nature appears. The situation of the first type is called under risk; the

second is called under complete uncertainty [109]. There are also situations in which it is not possible

to model the imprecision in a probabilistic way, at least not without an appreciable level of arbitrariness

[242,244].
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2.3.3 Main schools of decision

Two main approaches to provide aid in decision-making processes can be highlighted (cf. [224]): i) the

normative approach or value function model, which takes as a fundamental premise the DM’s rationality

and consistency and whose primary objective is building value or utility functions; and ii) the relational

approach, which, based on certain preferential information, derives a preference statement between pairs

of actions. Let us now describe these approaches.

Normative approach

A mathematical modeling of preferences developed on an axiomatic basis is the main aspect of the value

function model. This is carried out assuming DM’s consistency (i.e., ideal behavior), which is described as:

a) unlimited, conferring capabilities to perceive and evaluate differences between potential actions that

would be descriptively imperceptible; b) unrestricted, in the sense that the DM can not reject the task of

making preference judgments between two potential actions.

A well-defined set A of feasible alternatives is considered by this approach. The definition of this set

can take two forms: i) in the analytical form, the alternative 𝑎 ∈ A is a vector 𝑎 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) and is

considered a well defined set of constraints that leads the set A to be part of ℝ𝑛; ii) in the enumerative

form, A is described by a list of alternatives 𝑎 and it is not considered any kind of relationship with a set

of constraints.

Considering 𝑎, 𝑏 ∈ A , the DM is able to select (unambiguously) one and only one of the following

possibilities:

• 𝑎 ≻ 𝑏: 𝑎 is strictly preferred to 𝑏. It implies that the DM prefers alternative 𝑎 to alternative 𝑏; in

other words, there are clear and positive reasons that the DM would be disappointed if he were

forced to select alternative 𝑏 instead of alternative 𝑎.

• 𝑏 ≻ 𝑎: 𝑏 is strictly preferred to 𝑎.

• 𝑎 ∼ 𝑏: 𝑎 is indifferent to 𝑏. It means that the DM is indifferent between alternatives 𝑎 and 𝑏; In

other words, there are clear and positive reasons that the DMwould not be disappointed if he were

forced to select either of the two alternatives.

These relationships must fulfill the following properties:

Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ A , if the DM states that 𝑎 ≻ 𝑏 and 𝑏 ≻ 𝑐, then she/he must also affirm that 𝑎 ≻ 𝑐.

Asymmetry. Let 𝑎, 𝑏, 𝑐 ∈ A , if the DM states that 𝑎 ≻ 𝑏, then she/he should not claim that 𝑏 ≻ 𝑎.

Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ A , if the DM states that 𝑎 ∼ 𝑏 and 𝑏 ∼ 𝑐, then she/he must also affirm that 𝑎 ∼ 𝑐.
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Reflexivity. For every option 𝑎 ∈ A it happens that 𝑎 ∼ 𝑎.

Symmetry. Let 𝑎, 𝑏 ∈ A , if the DM states that 𝑎 ∼ 𝑏, then she/he must also affirm that 𝑏 ∼ 𝑎.

Transitivity as a whole. Let 𝑎, 𝑏, 𝑐 ∈ A , if the DM states that 𝑎 ∼ 𝑏 and 𝑏 ≻ 𝑐, then she/he must also affirm

that 𝑎 ≻ 𝑐; and if she/he say that 𝑎 ≻ 𝑏 and 𝑏 ∼ 𝑐, then she/he must also affirm that 𝑎 ≻ 𝑐.

What has been described up to now does not specify the existence of risk on the levels of performance

of the alternatives. The best known extension of the normative approach to risk treatment is based on

the von-Neumann and Morgenstern Utility Theory combined with de Finetti’s subjectivist approach to

probability (see [25]). As an alternative of decision, certain structures called lotteries are considered,

which describe the consequence and its probability. The axioms of the value function, together with

others related to lotteries, show that there is a particular value function, called utility, that models the DM

risk attitude, so that the most appropriate decision alternative is the one that maximizes expected utility

[109].

The popular representation of a lottery is:

𝑙 = <𝑝1, 𝑥1; 𝑝2, 𝑥2;⋯ ; 𝑝𝑟 , 𝑥𝑟>

where 𝑝𝑖 ≥ 0 represents the probability of winning the prize 𝑥𝑖 , 𝑖 = 1, 2,⋯ , 𝑟 and ∑ 𝑝𝑖 = 1.

It is also common to see compound lotteries, whose prizes are to win entry to another lottery:

𝑙 = <𝑞1, 𝑙1; 𝑞2, 𝑙2;⋯ ; 𝑞𝑠 , 𝑙𝑠>

where 𝑞𝑖 ≥ 0 represents the probability of winning the lottery entry 𝑙𝑖 , 𝑖 = 1, 2,⋯ , 𝑠 and ∑ 𝑞𝑖 = 1.

Let 𝑋 be the set of direct rewards (not lotteries) that can be obtained from a lottery; 𝐿 the set of lotteries

(simple or compound) on which the DM makes the decision; 𝑅𝐿 the set of possible results that can be

obtained from lotteries; and, for convenience and without loss of generality, let’s set the prizes in such a

way that 𝑥1 ⪰ 𝑥2 ⪰ ⋯ ⪰ 𝑥𝑟 . Let’s also define lotteries described as “reference lotteries” in the following

way:

<𝑝, 𝑥1; 0, 𝑥2;⋯ ; 0, 𝑥𝑟−1; (1 − 𝑝), 𝑥𝑟>

where the DM gets the best prize (𝑥1) with a probability 𝑝 and the worst prize (𝑥𝑟 ) with a probability 𝑝 −1.

Represent this type of lottery as 𝑥1𝑝𝑥𝑟 . Suppose the existence of a utility function 𝑢 ∶ ℝ → ℝ defined on

𝑋 = {𝑥1, 𝑥2,⋯ , 𝑥𝑟}, such that:

𝑥𝑗 ⪰ 𝑥𝑘 ⇔ 𝑢(𝑥𝑗 ) ≥ 𝑢(𝑥𝑘 )∀𝑥𝑗 , 𝑥𝑘 ∈ 𝑋,

and

<𝑝1, 𝑥1; 𝑝2, 𝑥2;⋯ ; 𝑝𝑟 , 𝑥𝑟> ⪰ <𝑝′
1
, 𝑥1; 𝑝

′

2
, 𝑥2;⋯ ; 𝑝

′

𝑟
, 𝑥𝑟> ⇔ ∑ 𝑝𝑖𝑢(𝑥𝑗 ) ≥ ∑ 𝑝

′

𝑖
𝑢(𝑥𝑗 ).

Let𝑤1, 𝑤2 ∈ 𝑅𝐿. It is said that there is comparability in 𝑅𝐿 since at least one of the following propositions

is true:

𝑤1 ⪰ 𝑤2;
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𝑤2 ⪰ 𝑤1.

Von-Neumann and Morgenstern formalized a rational decision paradigm under risk defined by the fol-

lowing set of axioms.

Axiom 1 (weak order). For each pair of lotteries, ⪰ is a weak order (comparable and transitive relationship).

Axiom 2 (not triviality). 𝑥1 ≻ 𝑥𝑟 .

Axiom 3 (reduction of lotteries composed of a simple lottery). Let

𝑙 = <𝑞1, 𝑙1; 𝑞2, 𝑙2;⋯ ; 𝑞𝑠 , 𝑙𝑠>, where 𝑙𝑗 = <𝑝𝑗1, 𝑥1; 𝑝𝑗2, 𝑥2;⋯ ; 𝑝𝑗𝑟 , 𝑥𝑟>; 𝑗 = 1, 2,⋯ , 𝑠. If 𝑙′ = <𝑝1, 𝑥1; 𝑝2, 𝑥2;⋯ ; 𝑝𝑟 , 𝑥𝑟>,

where 𝑝𝑖 = 𝑞1𝑝1𝑖 + 𝑞2𝑝2𝑖 +⋯ + 𝑞𝑠𝑝𝑠𝑖 ; 𝑖 = 1, 2,⋯ , 𝑟 , then the DM must affirm that 𝑙 ∼ 𝑙′.

Axiom 4 (substitutionality). Let 𝑎𝑖 , 𝑏, 𝑙, 𝑙′ ∈ 𝑅𝐿. Let

𝑙 = <𝑞1, 𝑎1; 𝑞2, 𝑎2;⋯ ; 𝑞𝑖 , 𝑎𝑖 ;⋯ ; 𝑞𝑟 , 𝑙𝑟> and 𝑙′ = <𝑞1, 𝑎1; 𝑞2, 𝑎2;⋯ ; 𝑞𝑖 , 𝑏;⋯ ; 𝑞𝑟 , 𝑙𝑟>. If 𝑎𝑖 ∼ 𝑏, then the DM

must state that 𝑙 ∼ 𝑙′.

Axiom 5 (the reference experiment). The DM can express preferences about lotteries of the form 𝑥1𝑝𝑥𝑟 ∈ 𝐿

∀𝑝, 0 ≤ 𝑝 ≤ 1.

Axiom 6 (monotony). 𝑥1𝑝𝑥𝑟 ⪰ 𝑥1𝑝′𝑥𝑟 ⇔ 𝑝 ≥ 𝑝
′.

Axiom 7 (continuity). ∀𝑥𝑖 ∈ 𝑋 ∃𝑢𝑖 , 0 ≤ 𝑢𝑖 ≤ 1, such that 𝑥𝑖 ∼ 𝑥1𝑢𝑖𝑥𝑟 .

A relevant concept in the theory of the decision in conditions of risk considered by the normative

approach is the concept of Certainty Equivalent that corresponds to the prize that the DMwould consider

indifferent to enter the lottery. That is, if the DM is presented with the option of entering the lottery or

receiving the Certainty Equivalent, she/he would be indifferent to one or the other option. More formally,

if 𝑙 is a lottery and 𝑢 a utility function, the certainty equivalent of 𝑙 is 𝑥𝑐 such that 𝑢(𝑥𝑐 ) = 𝐸[𝑢(𝑙)].

𝐸[𝑢(𝑙)] can be obtained only when the DM plays 𝑙 a sufficient amount of times. However, this situation

is difficult to occur, so it is necessary to take into account the DM’s attitude facing risk. This attitude is

subjective and can be classified as:

• averse to risk when 𝐸[𝑢(𝑙)] < 𝑢[𝐸(𝑙)] and 𝑥𝑐 < 𝐸(𝑙).

• risk-taker when 𝐸[𝑢(𝑙)] > 𝑢[𝐸(𝑙)] and 𝑥𝑐 > 𝐸(𝑙).

• neutral at risk when 𝐸[𝑢(𝑙)] = 𝑢[𝐸(𝑙)] and 𝑥𝑐 = 𝐸(𝑙).

In order to carry out a correct decision support task in risk conditions, it is necessary to carry out a

procedure in accordance with the attitude of the DM.

Relational approach

The normative approach has successfully achieved the formality of a theory based on axioms, concentrat-

ing on the creation of formal bases to model the preferences of the DM, however, it has disadvantages due
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to the rigidity that mathematical formalism adds to real phenomena of human behavior, modeling only

ideal situations with a proper concept of rationality.

The relational approach tries to avoid the limitations of the normative approach through a flexible

model that does not demand DM behaviors that are rigid and, sometimes, far from reality. This approach

implements a methodology called multicriteria decision aid (MCDA) that can be defined as follows (see

[244]): MCDA is the activity that, by using explicit models, but not necessarily formalized in a complete

way, helps to obtain elements of answers to the questions of those interested in a decision process. These

elements work to clarify the decision or simply favor a behavior that increases the consistency between

the evolution of the process and the objectives and value system of the stakeholders. MCDA considers

premises different to the ones considered by the normative approach. In the former, the decision problem

is based on formulating a judgment between two potential actions whose consequences may not be known

with precision.

According to Roy, in Ref. [244], under the conception of MCDA the analyst does not need to accept

any of the following postulates:

• Postulate of the DM optimum. In the context of the decision studied, there is at least one optimal

decision, or, in other words, there is a decision for which it is possible (if sufficient time and means

are available) to establish objectively that there are no strictly better decisions regarding the system

of DM preferences.

• Postulate of the reality about the decision context. The main aspects of the reality on which the

decision aiding is based (particularly the preferences of the DM) are related to knowledge objects

that can be seen as data (i.e., they exist outside the form in which they are modeled); these objects

can also be seen as sufficiently stable during the time in which the questions are asked, so that it is

possible to query the exact state or exact value (deterministic or stochastic) of given characteristics

that are judged to accurately portray an aspect of reality.

Furthermore, there are several reasons to avoid the dilemma of having to choose between strict pref-

erence and indifference:

a) Sometimes it is not possible to discriminate between ≻ and ∼. The information available may be in-

complete or too subjective. Implying indifference due to the lack of information is equivalent to taking

arbitrary risks.

b) The DM preferences may not be well defined. For example, that always happens (though not only)

when the DM is a group entity.

c) Sometimes it is not possible to determine the preferences of the DM, since she/he may be inaccessible

to the analyst, or be an ill-defined entity.
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d) Sometimes the DM does not want to discriminate between preference and indifference, because of

insecurity, lack of information, imprecision or important contradictions between the attributes of the

decision.

The objective of the MCDA is to provide the DM with a set of scientific bases that serve as a tool to

carry out a judgment procedure that has as its outcome a solution that satisfies her/him. According to the

situation, this methodology can contribute to [101]:

• analyze the context of decision-making by identifying the actors, the possibilities of action, their

consequences, ⋯;

• organize and/or structure how the decision-making process is developed to increase the coherence

between, on the one hand, the values underlying the objectives and goals and, on the other, the

decision made;

• to achieve the cooperation of the actors when proposing keys for a better mutual understanding

and a favorable working framework to debate;

• elaborate recommendations using the results taken from computational models and procedures

conceived within the framework of a working hypothesis;

• participate in the legitimation of the final decision.

2.3.4 Interval-based outranking approach

Fernandez et al. [97] recently proposed a novel approach called interval-based outranking that generalizes

the classical outrankingmethod. The classical outranking approach assumes that the DM’s decision policy

can be modeled by a preference model that contains punctual values of criterion weights, veto thresholds

and criterion scores; imperfect knowledge on criterion performance is modeled by using indifference and

preference thresholds. The interval-based outranking approach assumes that these preference parameters

and criterion scores are imperfectly known; imperfect knowledge is modeled through the representation

of parameters as interval numbers.

If we assume that A = {𝑥, 𝑦,⋯} is the set of potential actions and F = {𝑔1, 𝑔2,⋯ , 𝑔
𝑘
} is a coherent

family of criteria (in the sense expressed in Ref. [46]) where, without loss of generality, it is assumed that

all criteria are to be maximized, then some of the parameters used by the interval-based outranking are

the following. (Note the definition of the parameters as interval numbers.)

• 𝑔𝑗 (𝑥) = [𝑔
−

𝑗
(𝑥), 𝑔

+

𝑗
(𝑥)], the performance of 𝑥 ∈ A in criterion 𝑔𝑗 ;

• 𝑤𝑗 = [𝑤
−

𝑗
, 𝑤

+

𝑗
], the weight of criterion 𝑔𝑗 ;
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• 𝑣𝑗 = [𝑣
−

𝑗
, 𝑣

+

𝑗
], the veto threshold of criterion 𝑔𝑗 ; and

• 𝜆 = [𝜆
−
, 𝜆

+
] reflects a threshold for a sufficient strength of the concordance coalition.

Where 𝑥 ∈ A and 𝑗 = 1, 2,⋯ , 𝑘. Since the imperfect knowledge on the criterion performances is repre-

sented through intervals, no preference and indifference thresholds are used in Ref. [97].

Through the previous parameters, the interval-based outranking builds a likelihood index between

pairs (𝑥, 𝑦) ∈ A × A , 𝛽(𝑥, 𝑦) ∈ [0, 1], of the assertion “𝑥 is at least as good as 𝑦”, 𝑥𝑆𝑦. This approach

also uses a cutting level, 𝛽0, such that 𝑥𝑆𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0. Below we present a description of the method

proposed in Ref. [97].

The marginal likelihood index, 𝛼𝑗 (𝑥, 𝑦), on solution 𝑥 being at least as good as solution 𝑦 with respect

to criterion 𝑔𝑗 is calculated as

𝛼𝑗 (𝑥, 𝑦) = 𝑝(𝑔𝑗 (𝑥) ≥ 𝑔𝑗 (𝑦)).

Where 𝑝(⋅) is the possibility function described in Equation (2.2.4). If the existence of a likelihood threshold

𝛿𝑗 for each criterion 𝑔𝑗 is assumed, then the set of all criteria for which 𝛼𝑗 (𝑥, 𝑦) ≥ 𝛿𝑗 is called “concordance

coalitionwith the assertion 𝑥𝑆𝑦” and is denoted by 𝐶(𝑥𝑆
𝛿
𝑦). This concordance coalition is associated with

an index 𝛿 = min{𝛼𝑗 (𝑥, 𝑦) ∶ 𝑔𝑗 ∈ 𝐶(𝑥𝑆𝛿𝑦)}. 𝛿 is the likelihood that all criteria in the concordance coalition

are actually in agreement with 𝑥𝑆𝑦. (Recall that the performance of the solutions and the values in the

set of preference parameters are imperfectly known, so it is not possible to guarantee a total concordance

of the criteria.) Criteria that are not in 𝐶(𝑥𝑆
𝛿
𝑦) compose the discordance coalition, 𝐷(𝑥𝑆

𝛿
𝑦). All this is

formalized as

𝑔𝑗 ∈ 𝐶(𝑥𝑆𝛿𝑦) ⇔ 𝛼𝑗 (𝑥, 𝑦) ≥ 𝛿, and

𝐷(𝑥𝑆
𝛿
𝑦) = F − 𝐶(𝑥𝑆

𝛿
𝑦).

The imprecision in the definition of the parameters makes it impossible to guarantee ∑𝑤𝑗 = 1, as in the

classical outranking method. Any realization of the weights is valid only if that condition is fulfilled. So, it

must be ensured, at least, that it can be fulfilled. The following two feasibility constraints are established

with this purpose.
𝑘

∑

𝑗=1

𝑤
−

𝑗
≤ 1 (2.3.5)

𝑘

∑

𝑗=1

𝑤
+

𝑗
≥ 1 (2.3.6)

The concordance index of the statement “𝑥 is at least as good as 𝑦”, 𝑐(𝑥, 𝑦) = [𝑐
−
(𝑥, 𝑦), 𝑐+(𝑥, 𝑦)], is

defined as follows. First, it is intuitive to assume that

𝑐
−
(𝑥, 𝑦) = ∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
, and
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𝑐
+
(𝑥, 𝑦) = ∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
.

However, this does not necessarily fulfills constraints (2.3.5) and (2.3.6). To ensure these constraints ful-

fillment in the definition of 𝑐(𝑥, 𝑦), it is needed to consider the complete set of criteria, F . By definition,

this involves contemplating 𝐶(𝑥𝑆
𝛿
𝑦) and 𝐷(𝑥𝑆

𝛿
𝑦). Thus, considering Constraints (2.3.5) and (2.3.6) in the

definition of 𝑐(𝑥, 𝑦) = [𝑐
−
(𝑥, 𝑦), 𝑐

+
(𝑥, 𝑦)], we have that

𝑐
−
(𝑥, 𝑦) = ∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗

only if it is true that

∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
+ ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
≤ 1, and

∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
+ ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
≥ 1.

Otherwise, 𝑐−(𝑥, 𝑦) shall be

1 − ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
.

Similarly,

𝑐
+
(𝑥, 𝑦) = ∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗

only if it is true that

∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
+ ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
≤ 1, and

∑

𝑔𝑗∈𝐶(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
+ ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
+

𝑗
≥ 1.

Otherwise, 𝑐+(𝑥, 𝑦) shall be

1 − ∑

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

𝑤
−

𝑗
.

Fernandez et al. [97] show that 𝑐+(𝑥, 𝑦) ≥ 𝑐
−
(𝑥, 𝑦), and that if 𝐶(𝑥𝑆

𝛿
𝑦) = ∅ then 𝑐(𝑥, 𝑦) = [0, 0] and if

𝐶(𝑥𝑆
𝛿
𝑦) = F then 𝑐(𝑥, 𝑦) = [1, 1].

Let Δ be the set
{

𝛼𝑗 ∈ ℝ ∶ 𝑝(𝑔𝑗 (𝑥) ≥ 𝑔𝑗 (𝑦)) = 𝛼𝑗 ; 𝑗 = 1,⋯ , 𝑘

}

. For each 𝛿 ∈ Δ Fernandez et al. [97] state

that 𝑥 outranks 𝑦 with marginal likelihood index 𝐵
𝛿
and majority strength 𝜆 = [𝜆

−
, 𝜆

+
] (𝜆− > 0.5) if and

only if

1. 𝑝(𝑐(𝑥, 𝑦) ≥ 𝜆) ≥ 𝜙;

2. 1 − max

𝑔𝑗∈𝐷(𝑥𝑆𝛿𝑦)

{𝑝(𝑔𝑗 (𝑦) ≥ 𝑔𝑗 (𝑥) + 𝑣𝑗 )} ≥ 𝜙; and

3. 𝐵
𝛿
= max{𝜙} fulfilling 1 and 2.

Where 𝛿 ≥ 𝜙 ∈ ℝ, and 𝑝(⋅) is defined in (2.2.4). With the above notation, it is said that 𝑥 outranks 𝑦 with

likelihood index 𝛽(𝑥, 𝑦) ∈ [0, 1] = max{𝐵
𝛿
} (𝛿 ∈ Δ) and majority strength 𝜆 = [𝜆

−
, 𝜆

+
] (𝜆− > 0.5). If Δ

is empty, 𝛽(𝑥, 𝑦) is set to zero. Moreover, it is assumed that the DM uses an implicit likelihood threshold

𝛽0 > 0.5 such that if 𝛽(𝑥, 𝑦) ≥ 𝛽0 then the assertion “𝑥 is at least as good as 𝑦” is accepted.
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The concept of dominance is also extended in Ref. [97]. In that work, dominance is not crisp, but there

is a “degree of credibility”, 𝑥𝐷𝛼𝑦 , of the dominance. Let 𝑥 and 𝑦 be two solutions and 𝛼 a real number; 𝑦

is 𝛼-dominated by 𝑥 , denoted by 𝑥𝐷(𝛼)𝑦 , if and only if min

1≤𝑗≤𝑘

𝑝(𝑔𝑗 (𝑥) ≥ 𝑔𝑗 (𝑦)) = 𝛼 ≥ 0.5.

Finally, for each pair (𝑥, 𝑦) ∈ A × A , the following preference relations may be defined based on the

likelihood index associated with “𝑥 is at least as good as 𝑦”.

• Strict preference: 𝑥𝑃𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 𝛽(𝑦, 𝑥) < 0.5,

• Weak preference: 𝑥𝑄𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 0.5 ≤ 𝛽(𝑦, 𝑥) < 𝛽0,

• K preference: 𝑥𝐾𝑦 ⇔ 𝛽(𝑦, 𝑥) < 0.5 < 𝛽(𝑥, 𝑦) < 𝛽0,

• Indifference: 𝑥𝐼𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 𝛽(𝑦, 𝑥) ≥ 𝛽0,

where ∧ is the conjunction operator.

2.3.5 Eliciting the decision maker’s system of preferences

Due to the common conflicting nature of criteria in multicriteria problems, the total number of mathemat-

ically equivalent solutions can be very large or even infinite. However, the DM usually is interested only

in some preferred solutions instead of all these solutions. The information about the DM’s preferences can

be used in order to guide the search towards the most preferred solution [138,206]. That is, incorporating

the DM’s preferences to the search procedure before the actual search makes the optimization method

to recommend just the most preferred solution alternatives. Using this method, multiobjective optimiza-

tion problems (described below) can become scalar objective optimization problems. Then, a method to

optimize a scalar objective is applied to find the optimal solution.

The required preferential information can be specified either through direct procedures in which a

decision analyst elicits it directly from the DM, or through indirect procedures in which the DM provides

examples of holistic decisions. Then, such decisions are evaluated to determine the required preferential

parameters that are most consistent with the DM’s decisions. Generally, the preferential parameters used

by the approaches presented in the literature to model the DM’s system of preferences are rather difficult

for the DM to provide. This difficulty arises from at least one of four sources: a) the DM’s decision policy

does not match exactly with the model’s assumptions and mathematical structure; b) the DM’s decision

policy is poorly-defined (e.g. a heterogeneous group); c) the DM is amythical or inaccessible person; and d)

lack of capacity of the DM to express the implicit parameters of his/her decision policy in numerical form.

Indirect elicitation methods (which compose the so-called Preference Disaggregation Analysis paradigm)

is an alternative. This analysis infers the decision model’s parameters from holistic decisions provided by
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the DM and use regression-like methods to produce a decision model as consistent as possible with the

set of reference (training) decisions.

Preference Disaggregation Analysis

Preference Disaggregation Analysis (PDA) methods analyze decisions made by the DM in order to identify

the aggregation model that underlies the outcome of the known decisions. Such decisions create a so-

called reference set. Usually, this set could be [144]:

• a set of past decisions;

• a subset of decisions on current alternative solutions, especially when there are many of those;

• a set of fictitious actions, consisting of performances on the criteria which can be easily judged by

the decision maker to perform global comparisons.

The PDA paradigm is of growing interest because it requires less cognitive effort from the DM. The

underlining reason is that DMs often feel more comfortable about making decision judgments than about

explaining them. The DM is asked to provide a ranking or a classification of the reference alternatives

according to his/her decision policy (global preferences). Then, using regression-based techniques the

global preference model is estimated so that the DM’s global evaluation is reproduced as consistently as

possible by the model.

Indirect elicitation approaches have been used for decades to build functional or utility decision models

(e.g. [156,226,268]). In MCDA, Jacquet-Lagreze and Siskos [143] pioneered the UTA method. In the frame

of outranking (see Subsection 2.3.4) approaches, using indirect methods is even more important, because

the DM must set parameters that are very unfamiliar to her/him (e.g., veto thresholds). In this frame,

Richard [238] was one of the first authors trying to infer the parameters of an outranking-based method,

ELECTRE III (cf. [144]). Some important references are the works of Mousseau and Slowinski [216],

Doumpos et al. [79], and Fernandez et al. [99]. Zopounidis and Doumpos showed in Ref. [308] that

the methods using PDA obtained results that were clearly superior on several tests. All these proposals

identify punctual values for the model’s parameters, which are supposed to be appropriate to explain or

suggest new decisions. This is particularly important in problems with four or more objectives, because

the capacity of the human mind is limited to handling a small amount of information at the same time

[207].



2.4. Multiobjective optimization 47

2.4 Multiobjective optimization

2.4.1 Multiobjective optimization problems

A multiobjective (multicriteria) optimization problem can be defined as finding the values for all the de-

cision variables contained in a solution vector2 in such a way that they satisfy a list of constraints and

optimize a function vector of 𝑘 objective (criteria) functions3 according to the decision maker’s prefer-

ences. These objective functions express the criteria used to evaluate how “good” a potential action is and

they are often in conflict with each other. In this work, the Portfolio Optimization Problem is a multicrite-

ria optimization problem with 𝑛 ≥ 2 decision variables, 𝑘 ≥ 2 objective functions,𝑚 inequality constraints

and 𝑝 equality constraints. The Portfolio Optimization Problem requires a “good” compromise (from the

decision maker’s point of view) to be obtained among the 𝑘 criteria. Such compromise indicates here,

without loss of generality, maximization of the impact on the criteria. In what follows A denotes a set of

portfolios. Each portfolio 𝑥 ∈ A is composed of 𝑛 decision variables:

𝑥 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛]
⊤
.

Such decision variables represent the numerical values that characterize the amount of resources allocated

by a portfolio and that must be found to solve the optimization problem. These numerical values are

known as attributes and are assigned to the decision variables in such a way that a list of constraints (of

equality and inequality) is fulfilled:

𝑏𝑖(𝑥) ≤ 0; 𝑖 = 1, 2,⋯ , 𝑚;

𝑑𝑗 (𝑥) = 0; 𝑗 = 1, 2,⋯ , 𝑝.

The portfolios that fulfill these constraints are considered feasible and form the feasible space of solu-

tions (Ω).

It is possible to consider three euclidean spaces: the decision space, the objective space and the criteria

space. The decision space (solution space) is made up of 𝑛 dimensions and contains the solution vectors of

𝑛 decision variables. The objective space contains𝑀 dimensions and shows the impact on the𝑀 objectives

established by the decision maker. Finally, the criteria space is made up of 𝑘 dimensions and specifies the

area on which the portfolio performances from the solution space are plotted. Each axis of the criteria

space corresponds to a component of the criteria vector 𝑔, composed of 𝑘 criteria functions:

𝑔(𝑥) = [𝑔1(𝑥), 𝑔2(𝑥),⋯ , 𝑔
𝑘
(𝑥)]

⊤
.

2We will refer to a solution vector as simply solution. We will also indistinctly use potential action or

portfolio when addressing the Portfolio Optimization Problem.
3We will refer to objective functions indistinctly as criteria functions (or simply as criteria).
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The objective function is a formal representation ofwhat is to be optimized and depends on the variables

to be established within the optimization. An example of an objective function is the risk formulation of

the portfolio problem, viz.

maximize

𝑥∈Ω

𝑥
⊤
𝜁 − 𝜓𝑥

⊤
Σ𝑥,

subject to

𝑥
⊤
𝑙 = 1, 𝑙

⊤
= [1, 1,⋯ , 1].

Where 𝑥 represents the vector of weights indicating the support given to the investment objects (vector

solution, variables to be established), 𝜁 = {𝔼(𝑟1),⋯ ,𝔼(𝑟𝑛)}
⊤ is the vector of expected returns of the 𝑛

investment objects; 𝜓 is an indicator of the decision maker’s risk aversion, and Σ is the co-variance matrix

of the alternatives.

In this case, the only objective function is given by

𝑔1(𝑥) = 𝑥
⊤
𝜁 − 𝜓𝑥

⊤
Σ𝑥.

Without loss of generality, we say that a criteria vector 𝑔(𝑥) dominates another criteria vector 𝑔(𝑦)

(denoted as 𝑔(𝑥) ⪰ 𝑔(𝑦)) if and only if 𝑔𝑖(𝑥) ≥ 𝑔𝑖(𝑦) for all 𝑖 and exists a 𝑗 such that 𝑔𝑗 (𝑥) > 𝑔𝑗 (𝑦); 𝑖, 𝑗 ∈

1, 2,⋯ , 𝑘.

A feasible solution vector 𝑥 (𝑥 ∈ Ω) is Pareto-efficient if and only if there is no other feasible solution

vector 𝑦 such that 𝑦 ⪰ 𝑥 .

The Pareto front (PF) is the projection of the set of Pareto-efficient solutions in the criteria space.

Formally:

PF = {𝑔(𝑥) ∶ 𝑥 is Pareto-efficient}.

Usually, finding the PF is not an easy task and, sometimes, it is impossible. Therefore, it is common to

use techniques that allow approximations to the PF.

Usually, the Portfolio Optimization Problem is definedwith constraints representing relevant character-

istics. These constraints are related to the transaction costs, the cardinality of the portfolio, the difference

in the portfolio’s expected return with respect to the expected return of a standard index, the proportion of

the investment destined to specific alternatives or industries (e.g., R&D and social responsibility), the risk

implied in the portfolio, the minimum number of transactions, the investment amounts per operation and

round portions (e.g., transactional amounts of alternatives in multiples of 50, 100, 200, ⋯). The Portfolio

Optimization Problem is an instance of the family of quadratic programming problems when Markowitz’s

standard model of mean-variance is considered. But if this model is generalized to include cardinality and

delimitation constraints, then there is no exact algorithm capable of solving the portfolio problem in an

efficient manner. Heuristic (and specifically meta-heuristic) algorithms in this case are essential.
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2.4.2 Multiobjective evolutionary algorithms

Meta-heuristics are high-level procedures or heuristics designed to find, generate, or select a heuristic

(partial search algorithm) that can provide a good enough solution to optimization problems (relatively

close to the global optimum). They are especially useful with incomplete or imperfect information or a

limited computing capacity [35]. Most meta-heuristics make use of stochastic components (which involve

random variables) and do not use the gradient or Hessian matrix of the objective function, so they offer

the advantage that the function to be optimized does not need to be continuously differentiable. Further-

more, the Hessian matrix tends to make the optimization process slow as the number of decision variables

increases [39]. Meta-heuristics are capable of dealing with complex and large search spaces. They have

proven to be an effective tool for solving hard optimization problems (problems that can not be solved

optimally in acceptable time periods); they provide a balance between “good” solutions and an affordable

computational time and cost. However, meta-heuristics are usually based on specific characteristics of the

problem in question, which makes its design and development a complex task. This is because the number

of parameters of the meta-heuristics has a direct effect on the complexity of the algorithm, which compli-

cates the analysis. Moreover, the efficiency of the meta-heuristics depends on the operators provided by

the user, and the best alternatives for these operators can only be formalized by experts in the domain of

the problem and the meta-heuristics used.

Compared to optimization methods based on mathematical programming, meta-heuristics offer some

relevant advantages, from which the following stand out:

• Meta-heuristics are less sensitive to the mathematical properties of the objective function and the

constraints of the problem [66].

• Some meta-heuristics allow to approximate the Pareto front in a single run of the algorithm.

From these tools, the so-called evolutionary algorithms have proven to be one of the most efficient and

reliable methods due to the wide range of advantages they provide with respect to other optimization

tools. Moreover, evolutionary algorithms have a satisfactory behavior when dealing with problems with

large dimensions (regarding the number of alternatives and criteria).

Multiobjective evolutionary algorithms (MOEAs) are used to solve problems characterized by having

multiple criteria, problems with considerably large search spaces and whose solutions require risk man-

agement or uncertainty. The MOEAs are characterized by working with several solutions at the same

time, where each of these solutions satisfies to some extent each of the criteria. This allows them to work

trying to satisfy several criteria at the same time.

MOEAs belong to a class of meta-heuristic optimization algorithms based on a population; they usu-

ally use mechanisms inspired by biological evolution: reproduction, mutation, recombination, natural
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selection and survival of the fittest, to solve optimization problems. The candidate solutions to the opti-

mization problem play the role of individuals in a population, and the objective function determines the

environment within which the solutions “live”. Normally, MOEAs include four types of algorithms: ge-

netic algorithms, genetic programming, evolutionary programming and evolutionary strategy. Out of the

four types, genetic algorithms (GA) are the most popular. In genetic algorithms, the solution to a prob-

lem is sought in the form of strings of characters (the best representations are usually those that reflect

something about the problem that is addressed), virtually always applying recombination operators such

as crossing, selection and mutation operators. GA is one of the most popular meta-heuristics applied to

the Portfolio Optimization Problem.

Although genetic algorithms represent viable ways to solve models related to the selection of portfo-

lios, some problems arise during their implementation. These problems are related to the inherent nature

of the Portfolio Optimization Problem, mainly the imposition of multiple constraints. The main prob-

lem of applying genetic algorithms to optimization problems with constraints is how to deal with these

constraints. This can be done with strategies such as rejecting, repairing or penalizing solutions that

do not fulfill the constraints. An even more relevant disadvantage of genetic algorithms is the selection

of parameters. Because these algorithms require various parameters for which advanced knowledge of

the particular problem may be required (degree of mutation, crossing points, representation of the solu-

tions), this approach is often criticized when compared with other methods less dependent on the input

parameters.

Following Ref. [253], genetic algorithms encode candidate solutions in chains of characters of finite

length and of certain cardinality called chromosomes; the characters are called genes and the values of

these allele. A gene corresponds to a variable 𝑥𝑖 , and a chromosome corresponds to a solution represented

in a set of genes 𝑥 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) if there are 𝑛 decision variables. In the problem of non-linear 0-1

programming, a gene can be easily represented by two generic binary codes, 0 or 1. In the Portfolio

Optimization Problem, 𝑥𝑖 = 0 means that the 𝑖th investment object is not supported by the portfolio,

𝑥𝑖 = 1 means that the object will be supported with all the available resources and any value from (0, 1)

represents that the object will receive a part of the resources.

To achieve good solutions and implement natural selection through evolution, it is necessary to imple-

ment a measure to distinguish the quality between solutions. This measure could be an objective function

where the best solutions are chosen over the worst ones. The measure of quality, or fitness, must deter-

mine the relative aptitude of a solution that will subsequently be used in the genetic algorithm to guide

the evolution towards good solutions.

The size of the population, which is regularly specified by the user, is an important factor that affects

the scalability and performance of genetic algorithms. For example, small sizes of the population can lead

to premature convergence and poor performance of the solutions. On the other hand, large sizes of the
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population may lead to unnecessary spending computational time.

Once the problem has been encoded in chromosomes and the measure of aptitude to discriminate the

good solutions from the bad ones has been chosen, it is possible to start with the evolution of solutions to

the problem using the following steps (see [292]):

• Produce the initial population. The initial population of candidate solutions is usually generated

randomly throughout the search space. However, domain-specific knowledge or any other infor-

mation can be easily incorporated.

• Apply the crossing operation to the initial chromosomes. The main objective of the crossing opera-

tion is to generate a diverse offspring of chromosomes to obtain a better solution than their parents.

The offspring created by the crossing operation will not be identical to any particular parent, and

instead parental features will be combined in a new way [122]. There are several ways to achieve

this, and a competent performance depends on a correctly designed crossover mechanism, how-

ever there are some common techniques to create the offspring of chromosomes: one point, two

points and multiple points. The “one point” crossing technique randomly selects a crossing point

within the chromosome, then the parent chromosomes are exchanged at this point to produce new

offspring chromosomes.

• Perform the mutation operation on the chromosomes. While the crossing operation starts with

two or more parent solutions to create a new one, the mutation changes one solution randomly but

locally. A mutation operation is a method to create a new chromosome from another chromosome

in the population. The main objective of the mutation operation is to prevent the genetic algorithm

from converging too quickly in a small area of the search space. Usually, the mutation operation

occurs with a given probability and at a random point on the chromosomes. In the case of binary

chromosomes, the new chromosome can be generated based on randomly changing a gene from

‘0’ to ‘1’ or vice versa. In the case of real-valued alleles, a random generation of such value can be

assigned to an also randomly chosen gene.

• Use the selection operation to create the population with the greatest aptitude. After performing

the crossing and mutation operations (operations that create a new population), the next operation

will be to select the chromosomes with (perhaps) the highest fitness value. The selection operation

assigns more probability of being selected to those solutions with higher fitness values imposing

a survival mechanism of the fittest within the candidate solutions. There are several selection

procedures although such selection is usually made through the roulette approach, in which the

chromosomes are assigned to the search space in a roulette wheel proportional to their fitness. The

goal of this is that the fittest chromosome is more likely to be selected although elitism may not

be ensured.
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• Replace the original solutions. The population created by selection, crossing, and mutation re-

places the original parent population. Several replacement techniques such as elitist replacement,

intelligent generation replacement, and steady-state replacement methods are used in genetic al-

gorithms.

Multiobjective evolutionary algorithm based on decomposition

With the aim of aiding in the selection process, MOEAs find a subset of the Pareto-efficient solutions

that is provided to the DM who is in charge of selecting the best alternative according to his/her own

preferences. In order to present a representative subset of alternatives, MOEAs look for a manageable

number of Pareto-efficient solutions which are evenly distributed along the Pareto front (PF), and thus

are good representatives of the entire PF. The fitness measure in MOEAs based on the Pareto dominance

concept is determined by the individual’s Pareto dominance relations with respect to other individuals.

Using this fitness measure alone discourages the diversity of the search [175]. Several other efforts have

been made in order to discover complementary fitness measures.

One of the lines in this context is the aggregation of criteria. The idea is that a solution to the original

problem could be an optimal solution of a single criterion optimization problem inwhich the criterion is an

aggregation function of all the original criteria. Therefore, the approximation to the PF can be decomposed

into a number of single objective optimization sub-problems. MOEA/D [295] is a MOEA that implements

this idea. The objective in each of the sub-problems that MOEA/D optimizes is an aggregation of all

the criteria using different weights for the criteria. Neighborhood relations among these sub-problems

are defined based on the distances between their aggregation coefficient vectors. Each sub-problem (i.e.,

scalar aggregation function) is optimized in MOEA/D by using information mainly from its neighboring

sub-problems.

MOEA/D requires a decomposition technique for converting the approximation of the PF of Problem

(1.2.1) into a number of single objective optimization problems. In principle, any decomposition approach

can serve for this purpose. A common approach used in the MOEA/D context is the Tchebycheff method

[205]. A single objective optimization sub-problem in this approach is

minimize

𝑥∈Ω

(𝑓 (𝑥 |𝜆
𝑗
, 𝑧

∗
) = max

1≤𝑖≤𝑘

{𝜆
𝑗

𝑖
|𝑔𝑖(𝑥) − 𝑧

∗

𝑖
|}) (2.4.7)

where 𝜆𝑗 = (𝜆
𝑗

1
,⋯ , 𝜆

𝑗

𝑘
)
⊤, 𝜆𝑗

𝑖
∈ ℝ, is a weight vector of the criteria that satisfies 𝜆𝑗

𝑖
≥ 0 for all 𝑖 = 1,⋯ , 𝑘 and

∑
𝑘

𝑖=1
𝜆
𝑗

𝑖
= 1. 𝑧∗ = (𝑧

∗

1
,⋯ , 𝑧

∗

𝑘
)
⊤ is the reference point; that is, 𝑧∗

𝑖
= max{𝑔𝑖(𝑥)|𝑥 ∈ Ω}, for each 𝑖 = 1,⋯ , 𝑘.

And 𝑔𝑖(𝑥) is the impact in the 𝑖-th underlying criterion, as specified in Problem (1.2.1).

Following [175], it is well known that, under mild conditions, for each Pareto optimal portfolio there

exists a weight vector such that it is the optimal solution of (2.4.7) and each optimal solution of (2.4.7) is
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a Pareto optimal solution of problem (1.2.1).

If 𝜆1,⋯ , 𝜆
𝑁 is a set of weight vectors, then we have 𝑁 single objective optimization sub-problems. If 𝑁

is reasonably large and 𝜆1,⋯ , 𝜆
𝑁 are properly selected, then the optimal solutions to these sub-problems

will provide a good approximation to the PF of Problem (1.2.1) [295]. Algorithm 1 shows a simple algorithm

of MOEA/D.

Algorithm 1Multiobjective evolutionary algorithm based on decomposition, MOEA/D
Require: 𝑁 , the number of objective optimization sub-problems; and 𝑇 , the number of

closest weight vectors to 𝜆𝑖 .

Ensure: A final population, 𝑥1,⋯ , 𝑥
𝑁 .

1: For each 𝑖 = 1,⋯ , 𝑁 , set the indexes of the 𝑇 closest weight vectors to 𝜆𝑖 (computed

through the Euclidean distance) as 𝐵(𝑖) = 𝑖1,⋯ , 𝑖𝑇 ; where 𝜆𝑖1 ,⋯ , 𝜆
𝑖𝑇 is known as the

neighborhood of 𝜆𝑖 .

2: Generate an initial population 𝑥1,⋯ , 𝑥
𝑁 .

3: Initialize 𝑧∗ = (𝑧
∗

1
,⋯ , 𝑧

∗

𝑘
)
⊤, or a corresponding approximation.

4: for 𝑖 = 1,⋯ , 𝑁 do

5: Randomly select two indexes 𝑘, 𝑙 from 𝐵(𝑖), then generate a new solution �̂� from

𝑥
𝑘 and 𝑥 𝑙 by using genetic operators, and apply a mutation operator to �̂�.

6: Apply a problem-specific repair/improvement heuristic on �̂� to produce 𝑦 .

7: For each 𝑗 = 1,⋯ , 𝑘, if 𝑧∗
𝑗
< 𝑔𝑗(𝑦), then set 𝑧∗

𝑗
= 𝑔𝑗(𝑦).

8: For each index 𝑗 ∈ 𝐵(𝑖), if 𝑓 (𝑦 |𝜆𝑗 , 𝑧∗) < 𝑓 (𝑥 𝑗 |𝜆𝑗 , 𝑧∗), then set 𝑥 𝑗 = 𝑦.

9: end for

10: If the stopping criterion is satisfied, then stop and output 𝑥1,⋯ , 𝑥
𝑁 . Otherwise, go

to Step 4.

Preference-based multiobjective evolutionary algorithms

Evolutionary multi-criteria optimization algorithms (whose performance analyzing data have been vali-

dated in different fields, e.g., in Refs. [230,231]) work with a population of solutions and can approximate

a set of trade-off alternatives simultaneously. They have been widely accepted as a major tool for address-

ing the problem of finding “good” portfolios. The main goal of this type of algorithms is finding a set

of efficient solutions that approximate the true Pareto front in terms of convergence and diversity. The

intervention of the DM is thus not traditionally used in the process. So, rather little interest has been paid
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in the literature to choosing one of the efficient solutions as the final one in contrast to the interest paid

in approximating the whole Pareto front.

Recently, however, the interest in incorporating the DM’s preferences during the multi-objective op-

timization process has increased. Fonseca and Fleming [107] probably suggested the earliest attempt to

incorporate preferences; their proposal was to use MOGA together with goal information as an addi-

tional criterion to assign ranks to the members of a population. More recently, the idea of measuring the

preference-based distance of the potential solutions with respect to a reference point has gained much

interest (see e.g., Refs. [176,211,284]). Nevertheless, some of them are ad-hoc methodologies and/or treat

points outside the preferred region as equally redundant. Particularly, the so-called R-metric [176] is a

very recent and interesting idea.

Three classes of multi-objective optimization methods can be identified according to the role of the DM

in the solution process when he/she is available (cf. Refs. [141,205]). In a priori methods, the DM articulates

her/his preference information and hopes before the solution process. The difficulty here is that the DM

does not necessarily know the limitations and possibilities of the problem and may have too optimistic

or pessimistic hopes. Alternatively, a set of Pareto optimal solutions can be generated first and then the

DM is supposed to select the most preferred one among them. Typically, evolutionary multi-objective

optimization algorithms do this a posteriori way. However, it may not be suitable for the Portfolio Opti-

mization Problem addressed in this work given that if there are more than three criteria defined as interval

numbers in the problem, it may be difficult for the DM to analyze a large amount of information. On the

other hand, generating the set of efficient solutions may be computationally expensive. Furthermore, sup-

plying the DMwith a large amount of trade-off points provides many irrelevant or even noisy information

to the decision-making procedure. Another alternative is that, after each iteration, the DM is provided

with one or more efficient solutions that obey the preferences expressed as well as possible and he/she

can specify his/her preference information on them in such a way that this information is considered for

the next iteration. This seems to be the ideal way to incorporate the DM’s preferences into the search

process. However, there might be situations where the DM is not willing/capable to get involved in the

procedure. Hence, one of the other two ways to incorporate the preferences must be implemented.

Besides using different methods to provide preference information, multi-objective optimization algo-

rithms also differ from each other in the type of information that is utilized in generating new, improved

solutions and what is assumed about the behavior of the DM. Perhaps the most intuitive one is the weight-

ing method, which assigns a relative importance to each criterion: the larger the weight is, the more im-

portant the criterion is. Zitzler et al. [304] used this method combined with the hyper-volume indicator

[305] in order to guide the search based on the DM’s preferences expressed by weighting coefficients or a

reference point. Deb [70] developed a modified fitness-sharing mechanism, by using a weighted Euclidean

distance, to bias the population distribution. In Ref. [49], Branke and Deb modified the crowding distance
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calculation in NSGA-II by using a weighted mapping method in order to focus the search on the preferred

part of the Pareto front. Another method to use the DM’s preferences modifies the original Pareto domi-

nance by classifying criteria into different levels and priorities (e.g., [50,106,148]); thus, creating a ranking

of the criteria. A convenient way to perform such ranking is by providing the DMwith pairs of criteria and

asking her/him to provide a decision about which one is the most important. A relevant limitation with

this method is that there might be situations where incomparability exists and creating the whole ranking

may become a difficult problem to solve. The third approach combines the classical reference point-based

method [285] with evolutionary multi-objective optimization (e.g., [71,176,236]). In such methodology,

the DM supplies for each criterion the level that should be achieved according to her/his preferences. The

reservation level corresponds to the worst value for which the DM is still satisfied [28]. This method is

the most used in the related literature [28]. Another methodology to incorporate the DM’s preferences

is exploiting the outranking concept [244], which states the credibility index of the statement “solution

𝑥 is at least as good as solution 𝑦” (see e.g., Refs. [95,98]). This is a very convenient way to incorporate

the DM’s preferences since she/he usually considers more information than just the relative importance

of the criteria in order to make decisions. The outranking methods can handle intransitive preferences,

incomparability, veto effects, and even qualitative and ordinal information for some criteria. Furthermore,

through an adequate way of preference parameters elicitation, the DM’s decision policy can be reproduced

during the optimization procedure in such a way that the most preferred solution can be found and an

arduous work by the DM can be avoided.

2.5 Fuzzy Logic

The usefulness of the conventional dual logic for modeling purposes is undisputed. However, there are

limits to the possibility of using this logic. Particularly, because real situations are often uncertain or vague

concerning the description of the semantic meaning of the events, phenomena, or statements. Vagueness

is, together with uncertainty, the modeling goal of Fuzzy Logic [83].

Often, Fuzzy Logic is used in the context of the Portfolio Optimization Problem when it is difficult

to use Probability Theory. Fuzzy Logic is commonly used with the aim of reflecting the vagueness (or

ambiguity) in the definition of returns. One of the pioneering works of the Fuzzy Logic in the context of

the Portfolio Optimization Problem was the one made by Watada in Ref. [283]. He extended Markowitz’s

media-variance approach to the fuzzy environment. Huang proposed in Ref. [140] two models based on

fuzzy semi-variance as a risk measure using a genetic algorithm based on fuzzy simulation to provide a

general solution to these new problems. Wang et al. [282] use the concept of Fuzzy Value at Risk as a risk

measure in a portfolio optimization model where portfolio returns follow imprecise distributions. They

use a particle optimization algorithm to approximate optimal solutions. Huang [139] proposed a model
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based on fuzzy entropy as the risk measure to be minimized and used a genetic algorithm to look for

solutions close to the optimal ones. Man Hui et al. [191] incorporate the fuzzy concept in the portfolio

problem in order to include expert knowledge in the form of inaccurate information.

Fuzzy Logic [293] mainly focuses on modeling problems where classical approaches as Set Theory

and Probability Theory are insufficient or non-operational. It generalizes the classical notion of set and

proposition by introducing the concept of fuzziness through the so-called fuzzy set concept. Zadeh [293]

states that “the notion of a fuzzy set provides a convenient point of departure for the construction of a

conceptual framework which parallels in many respects the framework used in the case of ordinary sets,

but is more general than the latter and, potentially, may prove to have a much wider scope of applicability.

Essentially, such a framework provides a natural way of dealing with problems in which the source of

imprecision is the absence of sharply defined criteria of class membership rather than the presence of

random variables”. Some of the main goals of Fuzzy Logic are [303]:

• Modeling of uncertainty. The uncertainty modeled by Fuzzy Logic is in the sense of vagueness

rather than the lack of knowledge about the value of a parameter (as in tolerance analysis).

• Relaxation Classical models and methods are normally based on dual logic. Often this view does

not capture reality adequately. Fuzzy Logic has been used extensively to relax or generalize clas-

sical methods to a gradual character.

• Compactification. Due to the limited capacity of the human short term memory or of technical

systems it is often not possible to either store all relevant data, or to present masses of data to a

human observer in such a way that he or she can perceive the information contained in these data.

Fuzzy Logic has been used to reduce the complexity of data to an acceptably degree usually either

via linguistic variables or via fuzzy data analysis (fuzzy clustering, etc.).

• Meaning Preserving Reasoning. Expert system technology has already been used since two

decades and has led in many cases to disappointment. One of the reasons for this might be that

expert systems in their inference engines, when they are based on dual logic, perform symbol

processing (truth values true or false) rather than knowledge processing. In approximate reasoning

meanings are attached to words and sentences via linguistic variables. Inference engines then

have to be able to process meaningful linguistic expressions, rather than symbols, and arrive at

membership functions of fuzzy sets, which can then be re-translated into words and sentences via

linguistic approximation.
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2.5.1 Basic definitions

A classical (crisp) set is normally defined as a collection of elements or objects 𝑥 ∈ 𝑋 . Each single element

can either belong to or not belong to a set 𝐴, 𝐴 ⊆ 𝑋 . In the former case, the statement “𝑥 belongs to 𝐴”

is true, whereas in the latter case this statement is false. In the characteristic function describing such

classical set, 1 indicates membership and 0 non-membership. That is:

𝐴(𝑥) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 if 𝑥 ∈ 𝐴,

0 if 𝑥 ∉ 𝐴.

For a fuzzy set, the characteristic function allows various degrees of membership for the elements of a

given set. If 𝑋 is a collection of objects denoted generically by 𝑥 , then a fuzzy set �̃� in 𝑋 is a set of ordered

pairs:

�̃� = {(𝑥, 𝜇
�̃�
(𝑥))|𝑥 ∈ 𝑋, 𝜇

�̃�
(𝑥) ∈ [0, 1]}.

That is, �̃� on 𝑋 is characterized by a membership function that transforms the elements of a domain,

space or universe of discourse 𝑋 in the interval [0, 1], 𝜇
�̃�
∶ 𝑋 → [0, 1]. Thus, generalizing the concept of

classical set whose membership function takes values from {0,1}.

The support of a fuzzy set �̃�, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(�̃�), is the (crisp) set of all 𝑥 ∈ 𝑋 such that 𝜇
�̃�
(𝑥) > 0. The (crisp)

set of elements that belong to the fuzzy set �̃� at least to the degree 𝛼 is called the 𝛼-level set:

𝐴𝛼 = {𝑥 ∈ 𝑋 |𝜇
�̃�
(𝑥) ≥ 𝛼}.

For a finite fuzzy set �̃�, the cardinality |�̃�| is defined as

|�̃�| = ∑

𝑥∈𝑋

𝜇
�̃�
(𝑥).

||�̃�|| =
|�̃�|

|𝑋 |
is called the relative cardinality of �̃�.

2.5.2 Fuzzy Linguistic Approach

Fuzzy Linguistic Approach is an approximate approach that has a theoretical basis on Fuzzy Logic. It

represents qualitative aspects as linguistic values through linguistic variables [294]. A linguistic variable

is a variable whose values are words or sentences in a natural or artificial language. Such concept is

particularly important in situations where information may not be easily assessed quantitatively but it

can be easily assessed qualitatively. A classical example is the evaluation of subjective perception through

natural language: too much, high, pretty, fast, etc. The convenience of using qualitative labels instead
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of numerical values is provided by two aspects [57]. First, there are situations in which the information

can be non-quantifiable due to its nature, and thus, can only be “measured” using linguistic terms. But

there are other occasions in which quantitative information can not be measured because the necessary

elements are not available to carry out an exact measurement of that information, or because the cost of

its measurement is very high. Therefore, using an “approximate value” is accepted.

Following Ref. [294], a linguistic variable is characterized by a quintuple (𝐻 , 𝑇 (𝐻 ), 𝑈 , 𝐺, 𝑀 ) in which

𝐻 is the name of the variable; 𝑇 (𝐻 ) is the term-set of 𝐻 , that is, the collection of its linguistic values; 𝑈

is a universe of discourse; 𝐺 is a syntactic rule which generates the terms in 𝑇 (𝐻 ); and 𝑀 is a semantic

rule which associates with each linguistic value 𝑋 its meaning,𝑀(𝑋 ), where𝑀(𝑋 ) denotes a fuzzy subset

of 𝑈 . The meaning of a linguistic value 𝑋 is characterized by a compatibility function, 𝑐 ∶ 𝑈 → [0, 1],

which associates with each 𝑢 in 𝑈 its compatibility with 𝑋 . Thus, the compatibility of age 27 with young

might be 0.7, while that of 35 might be 0.2.

There are two possibilities to choose the appropriate linguistic descriptors of the term-sets and their

semantics. The first possibility is to define the set of linguistic terms by a context-free grammar, and

its semantics by fuzzy numbers described by a parameterized membership function and semantic rules

[44,294]. The second possibility defines the set of linguistic terms using an ordered structure of labels, and

the semantics of the linguistic terms is derived from the ordered structure itself, which can be uniformly

distributed in the interval [0, 1] or not [45].

2.5.3 Set-Theoretic Operations for Fuzzy Sets

As stated above, Fuzzy Logic is a generalization of the classical dual logic. Thus, the evident question

about the behaviour of the former with respect to the classical Set Theory operations arises. Here, we

present and describe some operators used to extent the classical Set Theory in order to deal with fuzzy

sets.

As in the classical Set Theory, the main operations with fuzzy sets are intersection (∩), union (∪), and

complement (∁). In the classical Set Theory such operations are defined for two (crisp) sets, 𝐴 and 𝐵, as

𝐴 ∩ 𝐵 = {𝑎|𝑎 ∈ 𝐴 and 𝑎 ∈ 𝐵}

𝐴 ∪ 𝐵 = {𝑎|𝑎 ∈ 𝐴 or 𝑎 ∈ 𝐵}

𝐴
∁
= {𝑎|𝑎 ∉ 𝐴}

Let 𝑣(𝑃 ) be the evaluation of proposition 𝑃 with values in {0, 1}. The above operations can be repre-

sented as:

𝑣(𝑎 ∈ 𝐴 ∩ 𝐵) = 𝑣(𝑎 ∈ 𝐴) ∧ 𝑣(𝑎 ∈ 𝐵),
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𝑣(𝑎 ∈ 𝐴 ∪ 𝐵) = 𝑣(𝑎 ∈ 𝐴) ∨ 𝑣(𝑎 ∈ 𝐵),

𝑣(𝑎 ∈ 𝐴
∁
) = ¬𝑣(𝑎 ∈ 𝐴).

Where ∧, ∨ and ¬ represent conjunction, disjunction and negation, respectively.

Now, if for each element 𝑎, the membership degree to set 𝐴 (i.e., 𝑎 ∈ 𝐴) is a number of [0, 1] instead of

{0, 1}, then the operators used to represent conjunction and disjunction are no longer satisfactory; new

operators extending the previous ones are needed. This extension requires taking into account that the

logical connectors valued in {0, 1} must be special cases of the ones valued in [0, 1]. Several operators

have been proposed with this purpose, where membership function plays a (naturally) crucial role. Let us

now present some of the most outstanding ones.

Traditional operators

We shall first present the concepts suggested by Zadeh in Ref. [293]. They constitute a consistent frame-

work for the theory of fuzzy sets. They are, however, not the only possible way to extend classical set

theory consistently. Zadeh and other authors have suggested alternative or additional definitions for set-

theoretic operations. The operators suggested by Zadeh in Ref. [293] are:

• Complement. The membership function of the complement of a fuzzy set �̃�, is defined by

𝜇
�̃�
∁ (𝑥) = 1 − 𝜇

�̃�
(𝑥).

• Intersection. The membership function of the intersection of two fuzzy sets �̃� and �̃� is defined by

𝜇
�̃�∩�̃�

(𝑥) = min{𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)}.

• Union. The membership function of the union of two fuzzy sets �̃� and �̃� is defined by

𝜇
�̃�∪�̃�

(𝑥) = max{𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)}.

The suggestions to use other operators besides the traditional ones vary with respect to the generality

or adaptability of the operators as well as to the degree to which and how they are justified. Justification

ranges from intuitive argumentation to empirical or axiomatic justification [303]. The most well-known

alternative operators are the so-called triangular norms and co-norms for conjunction and disjunction,

respectively.

Triangular norms and co-norms

Triangular norms (t-norms) are two-valued functions from [0, 1] × [0, 1] into [0, 1] that define a general

class of intersection operators for fuzzy sets and satisfy the following conditions:
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1. 𝑣(𝑃1 ∧ 𝑃2) depends only on the values 𝑣(𝑃1) and 𝑣(𝑃2).

2. If 𝑣(𝑃1) = 1 then 𝑣(𝑃1 ∧ 𝑃2) = 𝑣(𝑃2) for any 𝑃2.

3. 𝑣(𝑃1 ∧ 𝑃2) = 𝑣(𝑃2 ∧ 𝑃1).

4. If 𝑣(𝑃1) ≤ 𝑣(𝑃2) then 𝑣(𝑃1 ∧ 𝑃3) ≤ 𝑣(𝑃2 ∧ 𝑃3) for any 𝑃3.

5. 𝑣(𝑃1 ∧ (𝑃2 ∧ 𝑃3)) = 𝑣((𝑃1 ∧ 𝑃2) ∧ 𝑃3).

Where 𝑃1 and 𝑃2 are propositions. Analogously, a general class of aggregation operators for the union

of fuzzy sets called triangular co-norms or t-co-norms (sometimes referred to as s-norms) is defined as

follows.

t-co-norms or s-norms are associative, commutative, and monotonic two-placed functions S that map

from [0, 1] ×[0, 1] into [0, 1] [303]. These properties are formulated with the following conditions:

1. 𝑣(𝑃1 ∨ 𝑃2) depends only on the values 𝑣(𝑃1) and 𝑣(𝑃2).

2. If 𝑣(𝑃1) = 0 then 𝑣(𝑃1 ∨ 𝑃2) = 𝑣(𝑃2) for any 𝑃2.

3. 𝑣(𝑃1 ∨ 𝑃2) = 𝑣(𝑃2 ∨ 𝑃1).

4. If 𝑣(𝑃1) ≤ 𝑣(𝑃2) then 𝑣(𝑃1 ∨ 𝑃3) ≤ 𝑣(𝑃2 ∨ 𝑃3) for any 𝑃3.

5. 𝑣(𝑃1 ∨ (𝑃2 ∨ 𝑃3)) = 𝑣((𝑃1 ∨ 𝑃2) ∨ 𝑃3).

Where, again, 𝑃1 and 𝑃2 are propositions.

It is easy to see that 𝑠 is an s-norm if and only if 𝑡(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = ¬𝑠(¬𝜇

�̃�
(𝑥),¬𝜇

�̃�
(𝑥)) is a t-norm.

According to this association and using ¬ to denote standard negation ¬𝜇
�̃�
(𝑥) = 1 − 𝜇

�̃�
(𝑥), the following

examples of t-norms and s-norms can be given (see Ref. [303]):

𝑡𝑤 (𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

min{𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)} if max{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)} = 1,

0 otherwise.

𝑠𝑤 (𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

max{𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)} if min{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)} = 0,

1 otherwise.

𝑡1(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = max{0, 𝜇

�̃�
(𝑥) + 𝜇

�̃�
(𝑥) − 1}.

𝑠1(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = min{1, 𝜇

�̃�
(𝑥) + 𝜇

�̃�
(𝑥)}.
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𝑡1.5(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

𝜇
�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

2 − [𝜇
�̃�
(𝑥) + 𝜇

�̃�
(𝑥) − 𝜇

�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)]

.

𝑠1.5(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

𝜇
�̃�
(𝑥) + 𝜇

�̃�
(𝑥)

1 + 𝜇
�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

.

𝑡2(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = 𝜇

�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥).

𝑠2(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = 𝜇

�̃�
(𝑥) + 𝜇

�̃�
(𝑥) − 𝜇

�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥).

𝑡2.5(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

𝜇
�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

𝜇
�̃�
(𝑥) + 𝜇

�̃�
(𝑥) − 𝜇

�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

.

𝑠2.5(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) =

𝜇
�̃�
(𝑥) + 𝜇

�̃�
(𝑥) − 2𝜇

�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

1 − 𝜇
�̃�
(𝑥) ⋅ 𝜇

�̃�
(𝑥)

.

𝑡3(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = min{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)}.

𝑠3(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) = max{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)}.

These operators are ordered as follows:

𝑡𝑤 ≤ 𝑡1 ≤ 𝑡𝑙.5 ≤ 𝑡2 ≤ 𝑡2.5 ≤ 𝑡3, and

𝑠3 ≤ 𝑠2.5 ≤ 𝑠2 ≤ 𝑠1.5 ≤ 𝑠1 ≤ 𝑠𝑤 .

Thus, t-norms defined with the previous operators satisfy property (2.5.8) and s-norms satisfy property

(2.5.9):

𝑡(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) ≤ min{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)}. (2.5.8)

𝑠(𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥)) ≥ max{𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)}. (2.5.9)

It may be desirable to extend the range of the previously described operators in order to adapt them to

contexts where it is required. This is one of the main aspects of the so-called Compensatory Fuzzy Logic.
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2.5.4 Compensatory Fuzzy Logic

The minimum operator is not sensitive to changes in the truth values of the component predicates, which

is a limitation to solve problems of classification and selection [86]. Other t-norms do not have this diffi-

culty, but t-norms that lead the conjunction to values lower than the minimum reflect behaviors that are

too pessimistic. Operators with which low truth values of a component predicate could be compensated

with high truth values of others, would reflect a more optimistic behavior. Espin et al. [86] proved that

this permissive approach to compensation, seen as a decision making tool, is better in line with the multi-

criteria value theory. Picos [229] demonstrates that real decision makers behave compensatory in certain

situations (although, in others, the conjunction is less than the minimum). These ideas are the inspira-

tion of the so-called Compensatory Fuzzy Logic. Let us now briefly describe the axioms that describe the

Compensatory Fuzzy Logic (see [83,86]).

Let 𝑎 = (𝑎1, 𝑎2,⋯ , 𝑎𝑛), 𝑏 = (𝑏1, 𝑏2,⋯ , 𝑏𝑛), 𝑧 = (𝑧1, 𝑧2,⋯ , 𝑧𝑛) be any three elements of the Cartesian

product [0, 1]𝑛 . The quartet of operators (𝑐, 𝑑, 𝑜, 𝑛), where 𝑐 ∶ [0, 1]
𝑛
→ [0, 1] is the conjunction operator,

𝑑 ∶ [0, 1]
𝑛
→ [0, 1] is the disjunction operator, 𝑜 ∶ [0, 1]

𝑛
→ [0, 1] is the order operator and 𝑛 ∶ [0, 1] →

[0, 1] is the negation operator, constitute a Compensatory Fuzzy Logic if the following group of axioms is

satisfied:

1. Compensation axiom

min(𝑎1, 𝑎2,⋯ , 𝑎𝑛) ≤ 𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑛) ≤ max(𝑎1, 𝑎2,⋯ , 𝑎𝑛), and

min(𝑎1, 𝑎2,⋯ , 𝑎𝑛) ≤ 𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑛) ≤ max(𝑎1, 𝑎2,⋯ , 𝑎𝑛).

2. Symmetry (commutativity) axiom

𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑗 ,⋯ , 𝑎𝑛) = 𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑗 ,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛), and

𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑗 ,⋯ , 𝑎𝑛) = 𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑗 ,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛).

3. Strict growth axiom

If 𝑎1 = 𝑏1, ⋯, 𝑎𝑖−1 = 𝑏𝑖−1, 𝑎𝑖+1 = 𝑏𝑖+1, ⋯, 𝑎𝑛 = 𝑏𝑛 are greater than zero and 𝑎𝑖 > 𝑏𝑖 then

𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛) > 𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛), and

𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛) > 𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛).

4. Veto axiom

If 𝑎𝑖 = 0 for any 𝑖 then 𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛) = 0, and

If 𝑎𝑖 = 1 for any 𝑖 then 𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑖 ,⋯ , 𝑎𝑛) = 1.

5. Fuzzy reciprocity axiom

𝑜(𝑎, 𝑏) = 𝑛[𝑜, (𝑏, 𝑎)].

6. Fuzzy transitivity axiom

If 𝑜(𝑎, 𝑏) ≥ 0.5 and 𝑜(𝑏, 𝑧) ≥ 0.5, then 𝑜(𝑎, 𝑧) ≥ max(𝑜(𝑎, 𝑏), 𝑜(𝑏, 𝑧)).
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7. Morgan Laws

𝑛(𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑛)) = 𝑑(𝑛(𝑎1), 𝑛(𝑎2),⋯ , 𝑛(𝑎𝑛)), and

𝑛(𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑛)) = 𝑑(𝑛(𝑎1), 𝑛(𝑎2),⋯ , 𝑛(𝑎𝑛)).

8. Idempotency axiom

𝑐(𝑎, 𝑎,⋯ , 𝑎) = 𝑎, and

𝑑(𝑎, 𝑎,⋯ , 𝑎) = 𝑎.

The Compensatory Fuzzy Logic operators for conjunction have as limit the minimum operator [300].

Some compensatory logic operators are the arithmetic mean and the geometric mean. The latter is con-

sidered as the simplest among the quasi-arithmetic means (cf. [83,86]). Unlike the minimum operator,

the geometric mean satisfies the strict growth axiom of the Compensatory Fuzzy Logic [82]. Espin et al.

define in Refs. [83,86] a Geometric Mean-based Compensatory Fuzzy Logic that fulfills axioms 1-8 as the

following quartet of operators (𝑐, 𝑑, 𝑜, 𝑛):

• 𝑐(𝑎1, 𝑎2,⋯ , 𝑎𝑛) = (𝑎1, 𝑎2,⋯ , 𝑎𝑛)
1/𝑛 ,

• 𝑑(𝑎1, 𝑎2,⋯ , 𝑎𝑛) = 1 − ((1 − 𝑎1)(1 − 𝑎2)⋯ (1 − 𝑎𝑛))
1/𝑛 ,

• 𝑜(𝑎, 𝑏) = 0.5[𝑐(𝑎) − 𝑐(𝑏)] + 0.5, and

• 𝑛(𝑎) = 1 − 𝑎.

Espin et al. [84] proved that there is an interesting correspondence between the archimedean and

compensatory operators. For each arquimedean t-norm there exists a compensatory operator such that

𝑥𝐴𝑁𝐷𝑦 ≥ 𝑧𝐴𝑁𝐷𝑤 (where the 𝐴𝑁𝐷 is an archimedean) implies that 𝑥𝐴𝑁𝐷𝑦 ≥ 𝑧𝐴𝑁𝐷𝑤 where 𝐴𝑁𝐷 is a

compensatory one. In particular, they proved that the geometric mean corresponds in this sense with the

product operator.



Chapter 3

Uncertainty management through

confidence intervals in portfolio

optimization

3.1 Introduction

This chapter describes our proposal of using probabilistic confidence intervals as criteria underlying risky

objectives to characterize portfolios. Such characterization is important since it allows the investor to

consider not only the forecasted impact of the portfolios but also the risk of not obtaining that impact.

Furthermore, our proposal identifies the behavior of the investor when facing risk and gives her/him sup-

port depending on her/his own preferences, a crucial aspect when addressing the Portfolio Optimization

Problem.

In order to evaluate this proposal, an illustrative application in stock portfolio selection is included. We

use as our dataset 13 years of historical monthly prices of stocks in the Dow Jones Industrial Average index

(DJIA), including those of the 2008 crisis. Besides, we carry out an extensive evaluation comparing the

performance of our proposal with respect to the DJIA index, the Markowitz’s mean-variance approach,

and other more recent approaches. The results show that our proposal outperforms the other ones and

allow us to conclude that, within the context of our experiments, i) our proposal was effective in the

allocation of resources in most of the periods considered (156 scenarios), ii) our proposal is appropriate to

find portfolios by explicitly considering the investor’s attitude facing risk, and iii) the confidence intervals

implied a robust measure of risk even for the 2008 crisis.

64
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(a) Representation of an interval with a

high value of 𝛾𝑗 ; information required by a

highly risk-averse investor
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(b) Representation of an interval with a

small value of 𝛾𝑗 ; information required by

a lowly risk-averse investor
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Figure 3.1: Confidence intervals representing types of information required by different be-

haviours facing risk

The first section of this chapter describes our idea to characterize portfolios when dealing with risky

objectives and formalizes the optimization problem to address the idea. Section 3.3 presents a system for

the optimization of portfolios where the Multiobjective Evolutionary Algorithm based on Decomposition

(MOEA/D) is enhanced to deal with confidence intervals characterizing the portfolios. Finally, Section 3.4

provides an extensive validation of the proposal.

3.2 Problem formalization

Let 𝑅(𝑥) be a random variable that represents the return of portfolio 𝑥 and ℙ(𝜔) the probability that event

𝜔 will occur. Then, 𝜃𝛾 (𝑥) = [𝛼, 𝛽] ∶ ℙ(𝛼 ≤ 𝑅(𝑥) ≤ 𝛽) = 𝛾 (𝛼, 𝛽, 𝛾 ∈ ℝ) is called confidence interval

of the portfolio return. We assume that it is possible to consider multiple confidence intervals 𝜃
𝛾𝑗 (𝑥)

.

Furthermore, each value 𝛾𝑗 is selected by the investor according to his/her own preferences. This allows

us to incorporate his/her attitude facing risk in the following manner. First, suppose a highly risk-averse

investor; such investor would feel more satisfied of making a decision based on intervals with a high

probability of containing the actual return. That is, he/she considers more valuable the information about

the worst scenarios that could happen when selecting a portfolio; thus, he/she would select high values

for 𝛾𝑗 looking for protection against those scenarios (see Figure 3.1a). On the other hand, if the investor

is lowly risk-averse, he/she would prefer to make a decision based on intervals that tend to the expected

return (see Figure 3.1b).

Therefore, our proposal to characterize the portfolios consists in using confidence intervals as criteria
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underlying risky objectives. Thus, when the objective is maximization of return, we propose to select the

feasible portfolio that maximizes a set of confidence intervals of the portfolio return:

maximize

𝑥∈Ω

(𝜃(𝑥) = 𝜃𝛾1
(𝑥), 𝜃𝛾2

(𝑥),⋯ , 𝜃𝛾
𝑘
(𝑥)) (3.2.1)

where 𝜃𝛾𝑗 (𝑥) = {[𝛼𝑗 , 𝛽𝑗] ∶ ℙ(𝛼𝑗 ≤ 𝑅(𝑥) ≤ 𝛽𝑗 ) = 𝛾𝑗}, each value 𝛾𝑗 is specified by the investor and Ω is the

set of feasible portfolios. ℙ(𝜔) is the probability that event 𝜔 will occur and can be approximated through

the frequentist approach.

It is important to note that the maximization referred to in Problem (3.2.1) is not necessarily related to

the wideness of the intervals, but it is based on the possibility function defined in Equation (2.2.4). That

is, portfolios with the rightmost confidence intervals are preferred.

Each confidence interval 𝜃𝛾𝑗 (𝑥) is easily understandable even for an investor (decision maker, DM)

without a sophisticated technical preparation, since it represents the probability that the return of portfolio

𝑥 actually lies within the interval [𝛼𝑗 , 𝛽𝑗]. This is not the case if one considers the technical criteria used

in the mean-variance approach [195] or higher statistical moments [76,130,252,256].

Moreover, by using our proposal, the investor can define asmany criteria per objective as he/shewishes;

thus, the information describing the distribution is enough to satisfy his/her requirements. Nevertheless,

we believe that no more than one or two criteria are sufficient to satisfy his/her requirements for informa-

tion. This is because of the definition of each 𝜃𝛾𝑗 (𝑥), which allows the proposed approach to encompass

multiple points of the probability distribution in a single criterion. That is, in a single criterion we know

with a given probability that the portfolio’s return can be any of the values within the corresponding

interval. This is not possible in point estimators, where the statistical information relies on just one point.

In some approaches (see e.g., [126,195,196]) each criterion represents a single point of the probability

distribution, so a better description of the distribution requires a higher number of criteria.

3.3 System for selecting the portfolio that maximizes

confidence intervals

In order to evaluate the performance of our proposal to manage uncertainty, we first present the system

in charge of exploiting the idea. Given that the Portfolio Optimization Problem is combinatorial, the

system presented in the following subsections is based on Genetic Algorithms, which generally have

good performance in these kinds of problems (see Subsection 2.4.2).
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Algorithm

Considering several confidence intervals as evaluation criteria leads to a multicriteria optimization prob-

lem that can be addressed using a multiobjective Evolutionary Algorithm. We use MOEA/D in our system

to find acceptable solutions to Problem (3.2.1). Nevertheless, even when MOEA/D is widely recognized

as the most prominent MOEA based on aggregation of criteria, it has a poor diversity when dealing with

instances having complicated PFs [175]. To overcome this shortcoming, we use some improvements in-

troduced by Li and Zhang in Ref. [175]; namely, the setting of a maximal number of solutions replaced

by each offspring solution, a selection of parents involving not necessarily only the neighborhood of the

candidate solution, and a crossover that involves more than two parents. By using these newmechanisms,

the exploration ability of the search can be improved. Moreover, an enhancement of the original algorithm

is performed in order to deal with parameters defined as interval numbers. Algorithm 2 shows the pro-

cedure proposed to select portfolios characterized by confidence intervals. This algorithm is inspired on

Refs. [175,295].

Since it is often computationally expensive to find the exact ideal point 𝑧∗, we use 𝑧, which is initialized

in Step 3 and updated in Step 8 of the algorithm, as a substitute for 𝑧∗ in (2.4.7). Furthermore, we use a

nadir point, 𝑧𝑛𝑎𝑑 , to perform the normalization. Given that our implementation of MOEA/D has to deal

with interval numbers instead of real numbers, we consider the lower and upper bound of the intervals

to define 𝑧𝑛𝑎𝑑 and 𝑧, respectively. We update this reference through the lowest and highest possible

value attainable by the confidence interval. Finally, the individuals belonging to the population at the last

generation are considered as the result of one run. The individuals generated in 20 runs are introduced in

a pool, from where the non 𝛼-dominated solutions are selected as the final approximation to the PF (cf.

Section 2.3.4 to see the definition of 𝛼-dominance).

Chromosome representation

In this work, the chromosomes or individuals (alternatives of solution) in the population are represented

by a string of 𝑛 real numbers; that is, each gene in the chromosome is a real number. This is a commonway

of representing portfolios given its practicality in the representation of the resources assigned to stocks.

The 𝑖-th gene in the chromosome specifies the proportion of resources assigned to stock 𝑖. Individuals are

represented by a string composed of 𝑛 positions as shown in Figure 3.1.

Figure 3.1: Individual encoding

𝑥1 𝑥2 ⋯ 𝑥𝑛−1 𝑥𝑛
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Algorithm 2 Algorithm proposed to address Problem (3.2.1)
Require: Problem (3.2.1), see Section 3.4 for an illustrative application; 100 generations

as the stopping criterion; 𝑛𝑟 = 2, the maximal number of solutions replaced by each

offspring solution; 𝛿 = 0.9, probability of selecting parents only from the neigh-

borhood (instead of the whole population); 𝑁 = 100, the number of sub-problems;

𝑇 = 20, the number of weight vectors in the neighborhood of each weight vector.

Ensure: Approximation to the PS, {𝑥
1
, 𝑥

2
,⋯ , 𝑥

𝑁
}; approximation to the PF,

{𝜃(𝑥
1
), 𝜃(𝑥

2
),⋯ , 𝜃(𝑥

𝑁
)}.

1: Work out the 𝑇 closest weight vectors to each weight vector. (Recall that a weight

vector is a vector 𝜆𝑖 = (𝜆
𝑖

1
,⋯ , 𝜆

𝑖

𝑘
)
⊤ that allows to weigh the 𝑘 criteria in the 𝑖-th sub-

problem and satisfies 𝜆𝑖
𝑗
≥0 for all 𝑗 = 1,⋯ , 𝑘 and ∑

𝑘

𝑗=1
𝜆
𝑖

𝑗
= 1.) For each 𝑖 = 1,⋯ , 𝑁 ,

set 𝐵(𝑖) = {𝑖1,⋯ , 𝑖𝑇} where 𝜆𝑖1 ,⋯ , 𝜆
𝑖𝑇 are the closest weight vectors to 𝜆𝑖 .

2: Generate an initial population 𝑥1, 𝑥2,⋯ , 𝑥
𝑁 by uniformly randomly sampling from

Ω. Set 𝐹𝑉 𝑖
= 𝜃(𝑥

𝑖
) for 𝑖 = 1,⋯ , 𝑁 .

3: Initialize 𝑧𝑛𝑎𝑑 = (𝑧
𝑛𝑎𝑑

1
,⋯ , 𝑧

𝑛𝑎𝑑

𝑘
)
⊤ by setting 𝑧𝑛𝑎𝑑

𝑗
= min1≤𝑖≤𝑁 𝛼

𝑖

𝑗
, and 𝑧 = (𝑧1,⋯ , 𝑧𝑘)

⊤

by setting 𝑧𝑗 = max1≤𝑖≤𝑁 𝛽
𝑖

𝑗
. Where 𝛼 𝑖

𝑗
and 𝛽 𝑖

𝑗
are the lowest and highest attainable

return of solution 𝑖 in the 𝑗-th criterion; that is, 𝜃𝑗(𝑥 𝑖) = [𝛼
𝑖

𝑗
, 𝛽

𝑖

𝑗
]. 𝑧𝑛𝑎𝑑 and 𝑧 are used

in the update step in order to normalize the fitness values of the criteria.

4: for 𝑖 = 1,⋯ , 𝑁 , do

5: Selection of Mating/Update Range: Define the population 𝑃 , from where the

offspring will be produced, as the neighborhood of 𝜆𝑖 (with a probability of 𝛿) or as

the whole population (with a probability of 1 − 𝛿): uniformly randomly generate a

number 𝑟𝑎𝑛𝑑 from [0, 1], then set

𝑃 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝐵(𝑖) if 𝑟𝑎𝑛𝑑 < 𝛿,

{1,⋯ , 𝑁} otherwise.
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6: Reproduction: Set 𝑟1 = 𝑖 and randomly select two indexes 𝑟2 and 𝑟3 from 𝑃 , then

generate a solution �̂� from 𝑥
𝑟1 , 𝑥 𝑟2 and 𝑥 𝑟3 using genetic operators, finally perform a

mutation operation on �̂� with probability 𝑝𝑚 = 0.01 to produce a new solution 𝑦.

7: Repair: If an element of 𝑦 is out of the boundary of Ω, go to step 5.

8: Update of 𝑧𝑛𝑎𝑑 and 𝑧: For each 𝑗 = 1,⋯ , 𝑘, if 𝑧𝑛𝑎𝑑
𝑗

> 𝛼𝑗 , then set 𝑧𝑛𝑎𝑑
𝑗

= 𝛼𝑗 ; and if

𝑧𝑗 < 𝛽𝑗 , then set 𝑧𝑗 = 𝛽𝑗 , where 𝜃𝑗(𝑦) = [𝛼𝑗 , 𝛽𝑗].

9: Update of Solutions: Set 𝑐 = 0 and do the following:

1. If 𝑐 = 𝑛𝑟 or 𝑃 is empty, go to Step 10. Otherwise, randomly pick an index 𝑖 from

𝑃 .

2. Normalize 𝜃𝑗(𝑥 𝑖) = [𝛼
𝑖

𝑗
, 𝛽

𝑖

𝑗
] for 𝑗 = 1,⋯ , 𝑘, such that 𝜃𝑛𝑜𝑟𝑚

𝑗
(𝑥

𝑖
) = [𝛼

𝑖,𝑛𝑜𝑟𝑚

𝑗
, 𝛽

𝑖,𝑛𝑜𝑟𝑚

𝑗
]:

Make 𝛼 𝑖,𝑛𝑜𝑟𝑚
𝑗

=
𝛼
𝑖

𝑗
−𝑧

𝑛𝑎𝑑

𝑗

𝑧𝑗−𝑧
𝑛𝑎𝑑

𝑗

and 𝛽 𝑖,𝑛𝑜𝑟𝑚
𝑗

=
𝛽
𝑖

𝑗
−𝑧

𝑛𝑎𝑑

𝑗

𝑧𝑗−𝑧
𝑛𝑎𝑑

𝑗

.

3. Calculate 𝑔(𝑥 𝑖 |𝜆𝑖)𝑛𝑜𝑟𝑚 = max1≤𝑗≤𝑘{[1 − 𝛽
𝑖,𝑛𝑜𝑟𝑚

𝑗
, 1 − 𝛼

𝑖,𝑛𝑜𝑟𝑚

𝑗
]𝜆

𝑖
}.

4. If 𝑝(𝑔(𝑦 |𝜆𝑖)𝑛𝑜𝑟𝑚 ≥ 𝑔(𝑥
𝑖
|𝜆
𝑖
)
𝑛𝑜𝑟𝑚

) ≥ 0.5 then set 𝑥 𝑖 = 𝑦 , 𝐹𝑉 𝑖
= 𝜃(𝑦) and 𝑐 = 𝑐 + 1.

5. Remove 𝑖 from 𝑃 and go to 1.

10: Stopping Criterion: If the stopping criterion is satisfied, namely the number of

iterations is 100, then stop and output {𝑥1, 𝑥2,⋯ , 𝑥
𝑁
} and {𝐹 (𝑥

1
), 𝐹 (𝑥

2
),⋯ , 𝐹 (𝑥

𝑁
)}.

Otherwise go to Step 4.

11: end for
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Selection

Since 𝑓 (𝑥 |𝜆𝑗 , 𝑧∗), as defined in Equation (2.4.7), is continuous on 𝜆, the optimal solutions of the neighboring

sub-problems should be close in the decision space. MOEA/D exploits the neighborhood relationship

among the sub-problems for making its search effective and efficient [295]. Nevertheless, as stated above,

MOEA/D shows poor diversity in its solutions when facing complicated PFs [175]. One reason of this

problem is that the maximal number of solutions replaced by an offspring solution could be as large as

𝑇 , the neighborhood size. This implies that a single solution may replace most of the current solutions

of its neighboring sub-problems. As a result, diversity in the population could be significantly reduced.

In this work we intend to overcome this limitation by, as was done in [175], letting the offspring solution

replace no more than 𝑛𝑟 solutions of the current population. Furthermore, the solutions replaced may

not necessarily be in the neighborhood of the offspring solutions. But our proposal allows three different

parent solutions to be randomly selected from the whole population with a probability of 1−𝛿 . The values

𝑇 , 𝑛𝑟 and 𝛿 are 20, 2 and 0.9, respectively, as in [175].

Crossover

We create one offspring solution from the information contained in the three parents selected. The

crossover procedure works as follows. Let 𝑞𝐺1, 𝑞𝐺2, 𝑞𝐺3 be the quantity of genes satisfying 𝑥𝑖 > 0 in

parent 1, parent 2 and parent 3, respectively. The idea is that the parents provide similar proportions of

gene material to the offspring. So, the number of genes satisfying 𝑥𝑖 > 0 in the offspring solution is up to

𝑞𝐺𝐶 =
𝑞𝐺1+𝑞𝐺2+𝑞𝐺3

3
and each parent gives 𝑞𝐺𝐶

3
randomly chosen genes to the offspring solution.

Mutation

Themutation operation simply consists in swapping two randomly chosen genes of the offspring solution.

With the intention of a further improvement in the search exploration phase, the probability of mutation

is 𝑝𝑚 = 0.01.

Repairing process

In Section 2.4.2, we mentioned that the DM can consider several types of constraints during the optimiza-

tion process, depending on her own preferences. The illustrative application shown in the next section

considers only three of these constraints; namely, the budget constraint, the non-negativity constraint and

the bounds on individual stocks constraint. We can ensure fulfillment of the last two constraints easily
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in the chromosomes construction (e.g., gene 𝑗 is randomly selected in [𝑙𝑗 , 𝑢𝑗] if 𝑙𝑗 ≥ 0). Nevertheless, the

fulfillment of the budget constraint is not straightforward. The following techniques have been revised

here with this goal (cf. [60,118]).

• Discard infeasible solutions. Given that our approach has only few constraints that are not often

hit, the simplest approach is to “throw away” new infeasible solutions. That is, if a solution violates

a constraint, we just select another one.

• Normalization. We can introduce mechanisms to correct solutions that violate constraints. For

example, dividing every element in 𝑥 by the sum of the elements of 𝑥 ensures that all weights sum

to unity.

• Ordering. Add the value of the ordered elements of 𝑥 until the sum, 𝜎 , is greater or equal to one.

Assign to the last element considered in the previous sum the value 𝜎 − 1. Finally, assign zero to

the elements not considered in the sum.

• Penalization. Whenever a constraint is violated, we add a penalty term to the objective function

and we consequently degrade the quality of the solution.

In preliminary experiments, we have found that simply discarding the infeasible solutions is the most

suitable method in terms of time performance and quality of the solutions. Hence, this is the method we

use to satisfy the constraints in the experiments shown below.

Fitness evaluation

As stated above, the Tchebycheff method is used to aggregate the criteria (see Subsection 2.4.2), its com-

putation is given in Equation (2.4.7). In Step 9 of the algorithmwe use this aggregation as the fitness of the

solutions. In order to estimate the value of each criterion before the aggregation, a Montecarlo simulation

is performed. This simulation allows us to find an approximation to the probability distribution of a given

portfolio’s return.

A simulation point consists in the random generation of the portfolio’s return. This return is calculated

as the weighted sum of the return of the stocks in the portfolio. Whereas the return of a stock is generated

also in a random process where the historical returns of the stock are sampled. The “actual” return of the

stock is randomly generated from a sample of the historical returns of the stock, where the probability of

obtaining the actual return is given by the sample. The distribution of one thousand simulation points is

assumed to be the real probability distribution of the return of the portfolio, and the confidence intervals

are taken from this distribution according to the preferences expressed by the DM (Section 3.2).
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A pseudo-random numbers generator known as Mersenne Twister [198] is used in the simulation. The

algorithm of the generator has the following characteristics [199]:

• A period of 219,936.

• An equidistribution property of 623 dimensions.

• Quick generation. (Although dependent of the system architecture, the authors report that MT is

sometimes faster than the ANSI-C standard library.)

Final Selection

The number of solutions in the generated approximation to the PF may still be high enough to make the

decision difficult. Thus, a final selection procedure needs to be performed.

Let portfolios 𝑥 and 𝑦 be two points in the PF of Problem (3.2.1). Furthermore, assume that1

𝜃70(𝑥) = [0.0171, 0.0479], 𝜃99(𝑥) = [−0.1067, 0.0553], and

𝜃70(𝑦) = [−0.0004, 0.0220], 𝜃99(𝑦) = [−0.0428, 0.0311].

Hence, 𝑝(𝜃70(𝑥) ≥ 𝜃70(𝑦)) = 0.91 and 𝑝(𝜃99(𝑥) ≥ 𝜃99(𝑦)) = 0.42. Although both 𝑥 and 𝑦 are non 𝛼-

dominated (in the sense described in Section 2.3.4), portfolio 𝑥 is arguably better than portfolio 𝑦. The

final selection procedure followed here is based on the previous argument: let 𝐴 be the set of solutions’

performances in the approximation to the PF, similarly to the 𝛼-dominance concept described in Section

2.3.4, we say that 𝑥 is non-dominated in 𝐴 with degree 𝛽 if and only if2 min
𝑦∈𝐴−{𝑥}

{max
1≤𝑗≤𝑘

{𝑝(𝜃𝛾𝑗
(𝑥) ≥

𝜃𝛾𝑗
(𝑦))}} = 𝛽 . Our idea to exploit the risk management proposal is to select the portfolio that maximizes

𝛽 .

3.4 Validating the uncertainty management proposal

Our proposal to manage uncertainty is applied here to the Portfolio Optimization Problem considering a

risky objective, maximization of return. We argue that the uncertainty involved in this objective can be

1Portfolios 𝑥 and 𝑦 are two actual portfolios obtained in the experiments below.
2Here, we consider theminimum to represent conjunction, and themaximum to represent disjunction.

In this sense,max
1≤𝑗≤𝑘

{𝑝(𝜃𝛾𝑗
(𝑥) ≥ 𝜃𝛾𝑗

(𝑦))} is interpreted as the credibility of 𝑥 being non-dominated by 𝑦 .

Then,min
𝑦∈𝐴−{𝑥}

{max
1≤𝑗≤𝑘

{𝑝(𝜃𝛾𝑗
(𝑥) ≥ 𝜃𝛾𝑗

(𝑦))}} is interpreted as the credibility of 𝑥 being non-dominated

by any solution in the PF.
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encompassed by probabilistic confidence intervals, and use the system described above to exploit such

idea.

The selection of financial portfolios refers to the analysis of financial objects (e.g., stocks, funds, bonds)

to allocate resources that maximize the impact on the objectives of the decision maker. We show now an

application on the allocation of resources among a set of stocks with the risky objective of maximizing

the return.

3.4.1 Selecting confidence intervals

Stock portfolio selection consists of two stages (see [159,287,312]): stock valuation and portfolio optimiza-

tion. The first stage chooses “the best” subset of stocks, while the second stage assigns a proportion of

money to each of the chosen stocks. Here, we focus on the second stage.

Following Section 3.2, once the approximation to the return’s probability distribution has been con-

structed, we can obtain as many confidence intervals as needed. For this illustrative example, we simulate

a highly risk-averse DM that requests information on two intervals, one containing the portfolio return

with 70% of probability and the other containing it with the 99% of probability. Thus, the system presented

in Subsection 3.3 must address the following problem:

maximize

𝑥∈Ω

({𝜃70(𝑥), 𝜃99(𝑥)}), (3.4.2)

subject to

∑ 𝑥𝑗 = 1 → Budget constraint;

𝑥𝑗 ≥ 0 → Non-negativity conditions;

𝑥𝑗 ≤ 0.4 → Bounds on individual stocks;

(𝑗 = 1,⋯ , 𝑛).

Where

𝜃70(𝑥) = {[𝛼70, 𝛽70] ∶ ℙ(𝛼70 ≤ 𝑅(𝑥) ≤ 𝛽70) = 0.70}, and

𝜃99(𝑥) = {[𝛼99, 𝛽99] ∶ ℙ(𝛼99 ≤ 𝑅(𝑥) ≤ 𝛽99) = 0.99}.

Later, we compare the solutions to Problem (3.4.2) with the solutions obtained by a less risk-averse DM.

Thus, we now simulate a lowly risk-averse DM that requests information on intervals with the 30% and

50% of probability to contain the actual portfolio return. For this case, the proposed approach must solve
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the problem given by

maximize

𝑥∈Ω

({𝜃30(𝑥), 𝜃50(𝑥)}), (3.4.3)

subject to

∑ 𝑥𝑗 = 1 → Budget constraint;

𝑥𝑗 ≥ 0 → Non-negativity conditions;

𝑥𝑗 ≤ 0.4 → Bounds on individual stocks;

(𝑗 = 1,⋯ , 𝑛).

Where

𝜃30(𝑥) = {[𝛼30, 𝛽30] ∶ ℙ(𝛼30 ≤ 𝑅(𝑥) ≤ 𝛽30) = 0.30}, and

𝜃50(𝑥) = {[𝛼50, 𝛽50] ∶ ℙ(𝛼50 ≤ 𝑅(𝑥) ≤ 𝛽50) = 0.50}.

3.4.2 Experimental design

Dataset

We describe in this section the dataset used in our experiments. In these experiments, the performance of

our proposal is compared with that of a highly important market index, namely, the Dow Jones Industrial

Average, DJIA. The DJIA index contains the stocks of 30 of the largest companies in the United States of

America.

Following [267], the main contraindication of using market indexes as benchmarks is that the prof-

itability of portfolios is often compared to popular indexes such as DJIA, regardless of portfolio size or

classification of its stocks. Most investors expect to reach or exceed the yields of these indexes over time.

The problem with this expectation is that they are at a disadvantage because they are not “comparing ap-

ples to apples”. That is, there is no guarantee that the characteristics of the stocks in the portfolio coincide

with the characteristics of the stocks contained in the index. We avoid this trap by incorporating into the

portfolio only the stocks of the index being considered as benchmark.

We use the historical monthly returns of the stocks in the DJIA index for the period April 1998-March

2016 (see e.g., [287]) to perform a back-testing strategy (cf. [220]). Each investment horizon goes from

April of the current year toMarch of the following year because the yearly financial information is publicly
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available for the stock market in March [181]. The reason for using this particular period is because the

index shows upward and downward trends, so there are multiple scenarios to validate our proposal. The

duration of the period is an approximate average of the horizons used in several articles of the literature

revised. Finally, similarly to Refs. [124,181], we use a sliding time window of 60 months/1 month. That

is, we use five years for model training (e.g., we obtain metrics of the data set from April 1998 to March

2003) and one month for validation (e.g., we use the metrics obtained to create a portfolio and estimate

its monthly performance in April 2003). The process is then repeated for each period of one month (in a

sliding windowmanner) until the end of the evaluation period (see e.g., [124]). In other words, we consider

a buy and hold strategy (B&H), where we select the best stock portfolio of the current month by solving

Problem (3.4.2) or Problem (3.4.3) and using the historical metrics of the previous five years. This portfolio

is maintained over a one-month investment horizon. Each time we start a new investment horizon, we

review the stock portfolio (i.e., select a new distribution of resources among the stocks) according to the

corresponding horizon’s valuation.

As done in other works (see e.g., [10,56,124,187,302]), the historical monthly prices of the stocks and

index were downloaded from the Yahoo! Finance database [288]. DJIA index updated its listed stocks

several times during the period considered. Thus, the data retrieving process starts by finding out the

corresponding stocks to a specific year. The configuration of the historical data downloaded from the

database is Date, Open, High, Low, Close, Volume, and Adj. Close. We use the Close parameter to calculate

the returns. All data used in this work is available for consultation upon request.

3.4.3 Results

We show in this section the evaluation results when validating the capacity of our proposal to manage

uncertainty. First, we provide the results obtained when solving Problem (3.4.2); that is, when the DM is

highly risk averse. Later, we show the results obtained when solving Problem (3.4.3); that is, when the

DM is lowly risk averse. For both situations, we compare the solutions of the proposed approach using

three benchmarks: the DJIA index (Subsection 2.1.4.3), the mean-variance model (Subsection 2.1.1), and

the results provided by Gorgulho et al., in Ref. [124]. The latter comparison is valid given that the dataset

used in that work is a subset of the one used in this paper.

3.4.3.1 Selecting portfolios with high risk aversion

Results discussed in this subsection correspond to the assessment of solutions generated by our proposal

when addressing Problem (3.4.2).
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Comparing with Dow Jones Industrial Average index Tables 3.2 and 3.3 show the port-

folios, obtained by our proposal, that produce the most extreme returns when solving Problem (3.4.2); the

worst return, obtained for February 2009, and the best return, obtained for July 2009. Both tables show

the stocks in the portfolio, the actual return of these stocks and the proportion of resources assigned by

the proposed approach to each stock. Finally, both tables show also the return of the portfolio and the

corresponding confidence intervals obtained in the simulation. The portfolio shown in Table 3.2 produces

an actual return of 𝑅(𝑥) = −0.1243, while its 70% confidence interval is [0.0004, 0.0141] and its 99% con-

fidence interval is [-0.0389, 0.0188]. Note how the actual return of the portfolio is far from being within

the confidence intervals. This is due to the high volatility produced by the crisis. Interestingly, the worst

return obtained by our approach was not during the market crisis of October 2008. The return of DJIA

index in this month was -0.1406 (the lowest in the whole period considered) while the return obtained

by the proposed approach was -0.0797. We believe this situation is due to a consistency in the losses of

the stocks before October 2008. That is, the stocks of the DJIA index with the greatest losses (AA, AIG,

CAT, ⋯) had presented highly negative returns before October 2008, making the confidence intervals of

the portfolios containing those stocks to have low values and the approach to neglect most of them. It was

not until February 2009 that the volatility and the lack of consistency in the historical returns of the stocks

had repercussions on the performance of our proposal. But even when this was the worst performance

of our proposal in the whole period, it was actually not too far from the return of the DJIA index in the

corresponding month, -0.1172. The aggressive recovery of the stocks in the following months allowed the

proposed approach to find its best performance of the entire period, 0.0986, in April 2009. This return was

greater than each return produced by the index in the thirteen years.

Table 3.2: Portfolio created by the proposed approach for February 2009 when solving Problem

(3.4.2). Its return corresponds to the lowest return obtained in the whole period 2003-2016.

𝑅(𝑥) = −0.1243

𝑥70 = [0.0004, 0.0141] 𝑥99 = [−0.0389, 0.0188]

Stock Return 𝑥𝑖

Alcoa Corp (AA) -0.2003 0

American International Group Inc (AIG) -0.6719 0

American Express Company (AXP) -0.2791 0

Boeing Co. (BA) -0.2569 0

Bank of America Corporation (BAC) -0.3997 0

Citigroup, Inc (C) -0.5775 0

Caterpillar Inc. (CAT) -0.2023 0

Chevron Corporation (CVX) -0.1391 0.13

EI du Pont de Nemours & Co (DD) -0.1829 0

Walt Disney Company (DIS) -0.1891 0

Continued on next page
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Table 3.2 – Continued from previous page

Stock Return

General Electric Company (GE) -0.2984 0

Home Depot, Inc. (HD) -0.0297 0

HP Inc. (HPQ) -0.1646 0.198

International Business Machines Corporation (IBM) 0.0041 0

Intel Corporation (INTC) -0.0124 0

Johnson & Johnson (JNJ) -0.1333 0

JPMorgan Chase & Co. (JPM) -0.1043 0

Coca-Cola Company (KO) -0.0438 0

McDonald’s Corporation (MCD) -0.0994 0.316

3M Co. (MMM) -0.1549 0

Merck & Co., Inc. (MRK) -0.1524 0.056

Microsoft Corporation (MSFT) -0.0556 0

Pfizer Inc. (PFE) -0.1557 0

Procter & Gamble Co. (PG) -0.1161 0

AT&T Inc. (T) -0.0345 0

United Technologies Corporation (UTX) -0.1492 0

Verizon Communications Inc. (VZ) -0.0449 0

Wal-Mart Stores Inc. (WMT) 0.0450 0

Exxon Mobil Corporation (XOM) -0.1122 0.3

Table 3.3: Portfolio created by the proposed approach for July 2009when solving Problem (3.4.3).

Its return corresponds to the highest return obtained in the whole period 2003-2016.

𝑅(𝑥) = 0.0986

𝑥70 = [−0.0214, 0.0488] 𝑥99 = [−0.1024, 0.1522]

Stock Return 𝑥𝑖

Apple Inc. (AAPL) 0.1384 0

American Express Company (AXP) 0.219 0

Boeing Co. (BA) 0.0096 0

Caterpillar Inc. (CAT) 0.1205 0

Cisco Systems, Inc. (CSCO) 0.3335 0.192

Chevron Corporation (CVX) 0.1802 0

EI du Pont de Nemours & Co (DD) 0.0486 0

Walt Disney Company (DIS) 0.2073 0

General Electric Company (GE) 0.0767 0

Continued on next page
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Table 3.3 – Continued from previous page

Stock Return

Goldman Sachs Group Inc. (GS) 0.1433 0

Home Depot, Inc. (HD) 0.0978 0

International Business Machines Corporation (IBM) 0.1203 0.395

Intel Corporation (INTC) 0.1294 0

Johnson & Johnson (JNJ) 0.1631 0

JPMorgan Chase & Co. (JPM) 0.072 0.039

Coca-Cola Company (KO) 0.1331 0

McDonald’s Corporation (MCD) 0.0385 0

3M Co. (MMM) -0.0423 0.374

Merck & Co., Inc. (MRK) 0.1734 0

Microsoft Corporation (MSFT) 0.0733 0

Nike Inc. (NKE) -0.0105 0

Pfizer Inc. (PFE) 0.062 0

Procter & Gamble Co. (PG) 0.0863 0

Travelers Companies Inc. (TRV) 0.056 0

UnitedHealth Group Inc. (UNH) 0.0495 0

United Technologies Corporation (UTX) 0.0483 0

Visa Inc. (V) 0.0436 0

Verizon Communications Inc. (VZ) 0.0297 0

Wal-Mart Stores Inc. (WMT) 0.0069 0

Exxon Mobil Corporation (XOM) 0.1384 0

Figure 3.2 shows the returns obtained by our proposal and by the Dow Jones Industrial Average index

in the period 2003-2016. The difference between these results is shown in Figure 3.3. Although this figure

shows that there are several occasions where the difference is against the proposal (bars below zero),

the number of times and magnitude of difference when the proposed approach outperforms the index is

greater. Figure 3.4 confirms this through the accumulative return. Recall that the allocation of resources

is performed on a monthly basis (the returns are obtained at the end of the month and added to the

cumulative sum; later, the portfolio is reconfigured and a new allocation is performed), which implies that

each of these figures actually provides comparisons between the proposal and the reference index on the

basis of 156 scenarios.

It is interesting to highlight that the decrease of the proposed approach’s accumulative return in the

period Mar/2008-Feb/2009 is 0.27, while the decrease of the DJIA index in the same period is 0.52. This

implies that our proposal was more robust than the DJIA index in the worst crisis of the last years.
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Figure 3.2: Returns produced in the period 2003-2016 by the DJIA index and the proposed ap-

proach when solving Problem (3.4.2)

Figure 3.3: Difference of the returns obtained by the proposed approach when solving Problem

(3.4.2) and the DJIA index in the period 2003-2016

Aiming to analyze the quality of our approximation to the PF of Problem (3.4.2), we show the perfor-

mance of its extremes (i.e., the portfolio that maximizes criterion 𝜃99 and the portfolio that maximizes

criterion 𝜃70) and the average of its solutions’ performances. Figure 3.5 shows i) the accumulative return

of the DJIA index (identified as DJIA); ii) the accumulative return of the portfolio maximizing criterion

𝜃70 (Model (70)); iii) the accumulative return of the portfolio maximizing criterion 𝜃99 (Model (99)); and iv)

the average accumulative return of the portfolios in the PF (Model (Average)).
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Figure 3.4: Accumulative return produced in the period 2003-2016 by the DJIA index and the

proposed approach when solving Problem (3.4.2)
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Figure 3.5: Description of the PF obtained by the proposed approach when solving Problem

(3.4.2)

Comparing with the mean-variance model Now, we compare the results of the proposal

with those of the mean-variance (MV) model [195]. Figure 3.6 shows the comparison. In this Figure, the

approximation to the PF made by the MV classical formulation in a given month is described using the

average of all the returns within the whole approximation for that month (MV (average)). We also used

the risk aversion formulation and, similarly to Ref. [69], defined the high-risk aversion parameter as 𝛾 = 4.

(See Subsection 2.1.1 for the definition of both formulations.)
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Figure 3.6: Accumulative return produced in the period 2003-2016 by the Mean-Variance model

and the proposed approach when solving Problem (3.4.2)

Figure 3.7: Accumulative return shown in the period 2003-2009 by Ref. [124] and the proposed

approach when solving Problem (3.4.2)

Figure 3.6 shows superiority of the proposed approach over the mean-variance when using the classical

formulation. Nevertheless, it ends up being outperformed by the mean-variance when using the risk

aversion formulation. An interesting result shown in this figure is the fall suffered by the mean-variance

model during the 2008 crisis. In this period, its fall is appreciably steeper than that of our proposal. This,

together with the also steeper rise of the mean-variance model, might indicate lack of representativeness

of the DM’s risk behavior.

Comparing with a recent benchmark Finally, we compare the performance of our proposal

with that of a recently published work [124] whose dataset is a subset of the one used here. Particularly,
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they used the returns of stocks within the DJIA index in the period 2003-2009. Hence, the comparison is

in that specific period. The comparison of the results is shown in Figure 3.7.

3.4.3.2 Selecting portfolios with low risk aversion

Results discussed in this subsection correspond to the assessment of solutions generated by our proposal

when addressing Problem (3.4.3).

Comparing with Dow Jones Industrial Average index Figure 3.8 shows i) the accumu-

lative return of the DJIA index (identified as DJIA); ii) the accumulative return of the portfolio with the

highest non-dominance degree from the PF, (Model (30, 50)); iii) the accumulative return of the portfolio

maximizing criterion 𝜃30 (Model (30)); iv) the accumulative return of the portfolio maximizing criterion

𝜃50, (Model (50)); and v) the average accumulative return of the portfolios in the PF, (Model (Average)).

Figure 3.8: Performance of some solutions in the PF obtained by the proposed approach when

solving Problem (3.4.3)

Comparing with mean-variance model Figure 3.9 presents a comparison between the per-

formance of the solutions found by the proposal when solving Problem (3.4.3) and the mean-variance

model in its classic and risk aversion formulations. Here, similarly to Ref. [69], we defined the low risk

aversion as 𝛾 = 3.
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Figure 3.9: Accumulative return produced in the period 2003-2016 by the Mean-Variance model

and the proposed approach when solving Problem (3.4.3)

Comparing with a recent benchmark Figure 3.10 shows the comparison between the solu-

tions of the proposal and the results provided by Ref. [124].

Figure 3.10: Accumulative return shown in the period 2003-2009 by Ref. [124] and the proposed

approach when solving Problem (3.4.3)

3.4.4 Discussion

It is evidently that the performance of the approach when solving Problem (3.4.3) is better than the per-

formance of the approach when solving Problem (3.4.2). This situation is due to the general uptrend of the

market and the conservativism of the approach when solving Problem (3.4.2) that prevents it from taking

advantage of the trend.
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In order to support this claim, we develop an analysis of the last year of the crisis (Mar/2008-Feb/2009)

and the subsequent year to the crisis (Feb/2009-Jan/2010) that allows us to see the effects of risk aversion

embodied by both problems. We selected these years because they present the steepest fall and rise of the

whole period.

From March 2008 to February 2009,

• the accumulative return of the portfolio from the PF that maximizes the 99% confidence interval

fell from 0.47 to 0.14 (a difference of 0.33);

• the accumulative return of the portfolio from the PF that maximizes the 70% confidence interval

fell from 0.46 to 0.17 (a difference of 0.29);

• the accumulative return of the portfolio from the PF that maximizes the 50% confidence interval

fell from 0.91 to 0.51 (a difference of 0.40);

• the accumulative return of the portfolio from the PF that maximizes the 30% confidence interval

fell from 0.90 to 0.49 (a difference of 0.41).

From February 2009 to January 2010,

• the accumulative return of the portfolio from the PF that maximizes the 99% confidence interval

raised from 0.14 to 0.38 (a difference of 0.24);

• the accumulative return of the portfolio from the PF that maximizes the 70% confidence interval

raised from 0.17 to 0.58 (a difference of 0.41);

• the accumulative return of the portfolio from the PF that maximizes the 50% confidence interval

raised from 0.51 to 1.10 (a difference of 0.59);

• the accumulative return of the portfolio from the PF that maximizes the 30% confidence interval

raised from 0.49 to 1.08 (a difference of 0.59).

(As a reference, the DJIA index fell 0.52 and raised 0.37.)

Hence, in these periods there was, although not clearly, a tendency to decrease losses in the downtrend

as the probability of the intervals increases, and to increase profits in the uptrend as the probability of the

intervals decreases. This indicates a correct modeling of the DM’s attitude when facing risk.

We also see that, in general, the solutions with the best performance are those with the highest non-

dominance degree. Finally, we can see that the performance of the portfolios generated by the approach,

and particularly those generated by solving Problem (3.4.3), clearly outperforms not just the Dow Jones

Industrial Average index but also the performance of some portfolios built by other researchers in the

literature [124,136,155,195].



Chapter 4

An elicitation method of the decision

maker’s system of preferences

The results of the portfolio optimization must be in agreement with the decision maker’s preferences.

However, it is usually very difficult to obtain the values of the parameters in models representing the deci-

sionmaker’s system of preferences. This difficulty is a source of imprecision, uncertainty, ill-determination

and arbitrariness. We describe and evaluate in this chapter our proposal to indirectly elicit such parameter

values when the preference model in consideration is the interval-based outranking approach (Subsection

2.3.4).

The proposal is extensively assessed in its ability to reproduce the DM’s preferences in two contexts.

First, we evaluate the proposal’s effectiveness to define the same binary preference relations between

portfolios as the ones stated by the DM. Later, the proposal’s effectiveness to produce the same assignment

of portfolios to categories as the one made by the DM is evaluated. Results show a high effectiveness of

the proposal in the two contexts both in-sample and out-of-sample, and with many criteria.

This chapter starts by providing an introduction to the indirect elicitation procedures and, particularly,

the so-called Preference Disaggregation Analysis. Section 4.2 formalizes our proposal to elicit the parame-

ter values of the interval-based outranking method; such parameter values represent an approximation to

the decision maker’s system of preferences. In order to evaluate the proposal, a genetic-algorithm-based

system is presented in Section 4.3. Finally, an extensive evaluation is performed and described in Section

4.4.
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4.1 Introduction

In most cases, the Portfolio Optimization Problem can be addressed by a multicriteria decision aiding

(MCDA) method (cf. Section 1.1). MCDA methods are mostly related to an aggregation of conflicting cri-

teria to reach a final decision or recommendation. As a consequence of its conflictive nature and unlike the

decision making under a single criterion, decision making under multiple criteria prevents the existence

of an ideal solution. Hence, the decision maker’s (DM) particular system of preferences (decision policy)

becomes the primary tool for choosing the most preferred solution from a mathematically equivalent set

of solutions. Here, we assume that the DM has already made (or agrees with) a set of (reference) decisions;

thus, his/her preferences have been implicitly aggregated and are present in such decisions. Our aim in

this chapter is therefore to provide and evaluate a procedure that allows us to elicit the DM’s decision

policy through a disaggregation of the preferences in these decisions.

Portfolio Optimization Problem involves a finite set of portfolios (decision objects, potential actions,

alternatives of solution); in this work, we consider the case where the DM needs to evaluate these portfo-

lios under the selection and the ordinal classification problems (𝑃𝛼 and 𝑃
𝛽
problems [242], cf. Subsection

2.3.2). Multicriteria decision aiding provides a wide range of appropriate methodologies for such situa-

tions. However, the aid provided by MCDA is not effective unless it represents the decision policy of the

DM with an acceptable accuracy and in a congruent manner with respect to the specific characteristics

of the problem. This can be done through an interaction between the DM and a Decision Analyst (DA).

However, there are situations where an interaction with the DM does not solve the problem, first because

of the complexity of the problem and second because the DM may not be accessible (e.g., because he/she

does not even exist). In those cases, an indirect method has to be used. When using an interactive commu-

nication session approach between the decision analyst and the decision maker, the DA obtains specific

information about the DM’s preferences (e.g., weights, thresholds, etc.). Nevertheless, it is possible that

the number of parameters required by the decision aiding model is overwhelming and the DM cannot or

will not commit to provide the information. In any case, the task is not easy, since the DM usually has

difficulties to explicitly specify numerical parameters and the time and cognitive effort required to do so

may be inhibitory. The methods of preference disaggregation [144] are useful in this context. Preference

disaggregation methods analyze decisions made by the DM in order to identify the aggregation model that

underlies the outcome of the known decision. The Preference Disaggregation Analysis (PDA) paradigm

infers the decision-making parameters of the DM from holistic decisions provided by her/him and uses

regression-like methods to produce a decision model as consistent as possible with the set of reference

decisions.

The Preference Disaggregation Analysis paradigm is of growing interest because it implies a lower

cognitive effort from the DM. Nevertheless, the concept of “true” value of a decision model parameter is

ill-defined due to several reasons: i) the DM’s decision policy does not match exactly with the model’s as-
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sumptions andmathematical structure; b) the DM’s decision policy is poorly-defined (e.g. a heterogeneous

group); c) the DM is a mythical or inaccessible person, and d) poor information on criterion performances.

Thus, there is always imprecision, uncertainty, ill-definition and/or arbitrariness (imperfect knowledge,

according to Roy et al., [246]) to be handled by the PDA when eliciting the values of the parameters. It

would be more convenient if, instead of punctual values, the indirect elicitation offered the flexibility to

consider the parameters as ranges of numbers, where the imperfect knowledge is contained within the

interval.

Many works in the literature have applied PDA to get a decision model consistent with the decision-

maker’s holistic decisions. To the best of our knowledge, however, all these studies have assumed the

parameters of the underlying aggregation model as punctual values, even when there have been proposals

(e.g., [97,178,179]) where themodels’ parameters are in fact being considered as ranges of values. Themain

contribution of the proposal described in this chapter is therefore to obtain decision model parameters

consistent with a reference set when each parameter is represented as a range of numbers; particularly, we

consider the case where the decisionmodel adopted is the interval-based outranking approach (Subsection

2.3.4). Let us now present this proposal.

4.2 Formalization of the proposal

The imperfect knowledge that characterizes the decisionmaker’s (DM) implicit model of preferences [246]

rises the idea that vague or ill-determined information should be considered during the modeling of the

DM’s preferences [97]. However, it is often difficult for the DM to express specific values for the param-

eters of models representing her/his own preferences [216], even when these parameters are defined as

ranges of numbers as described in Subsection 2.3.4.

In this chapter we present and validate a novel way to indirectly obtain the DM’s implicit system of

preferences through an interval-based Preference Disaggregation Analysis. The main characteristic of

the proposal relies in allowing the DM’s decision policy to contain imperfect knowledge. Such imperfect

knowledge is modeled here in form of interval numbers. The inference rules used by our proposal are

based on plausible assumptions that can be easily interpreted and specifically suited by the DM/analyst

couple. Furthermore, the construction of the reference set is intended to avoid an arduous work of the DM

by letting her/him simply assign some portfolios to the categories (also known in the related literature

as classes), or just agree with such assignments. The DM’s decision policy is reflected by such reference

set, and it is from this set where the proposal draws an approximation to the DM’s implicit system of

preferences.

Let us now introduce/recall some assumptions that are basic for presenting our proposal:
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1. There is a finite set A of portfolios described by a coherent family of criteria F = {𝑔1(⋅),⋯ , 𝑔
𝑘
(⋅)}

(in the sense of [46]), where 𝑔𝑗 (𝑥) = [𝑔
−

𝑗
(𝑥), 𝑔

+

𝑗
(𝑥)] is the interval number that represents the per-

formance evaluation of portfolio 𝑥 ∈ A in attribute 𝑔𝑗 ; without loss of generality, it is assumed

that all criteria are to be maximized.

2. The DM makes decisions on the basis of the interval-based outranking decision model (Subsection

2.3.4) described by the set of parameters P = {𝑤1,⋯ , 𝑤
𝑘
, 𝑣1,⋯ , 𝑣

𝑘
, 𝜆, 𝛽0}.

3. There is a finite set, C = {𝐶1,⋯ , 𝐶𝑟}, of ordered categories, such that if 𝑖 > 𝑗, then the DM prefers

the elements in 𝐶𝑖 over the elements in 𝐶𝑗 .

4. For each pair (𝑥, 𝑦) ∈ A ×A , the following preference relations are defined based on the likelihood

index associated with “x is at least as good as y” defined in Subsection 2.3.4 and calculated on the

basis of P :

• Strict preference: 𝑥𝑃P𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 𝛽(𝑦, 𝑥) < 0.5,

• Weak preference: 𝑥𝑄P𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 0.5 ≤ 𝛽(𝑦, 𝑥) < 𝛽0,

• K preference: 𝑥𝐾P𝑦 ⇔ 𝛽(𝑦, 𝑥) < 0.5 < 𝛽(𝑥, 𝑦) < 𝛽0,

• Indifference: 𝑥𝐼P𝑦 ⇔ 𝛽(𝑥, 𝑦) ≥ 𝛽0 ∧ 𝛽(𝑦, 𝑥) ≥ 𝛽0,

where ∧ is the conjunction operator and 𝛽(𝑥, 𝑦) is the likelihood index of the assertion “𝑥 is at least

as good as 𝑦”, 𝑥𝑆𝑦 .

5. The DM assigns each 𝑥 ∈ A to one category 𝐶𝑗 ∈ C on the basis of P . (Alternatively, the

DM accepts its assignation to the category.) We denote such assignment as 𝐶P (𝑥) = 𝑗. For all

(𝑥, 𝑦) ∈ A ∈ A the assignment should be consistent with the following conditions:

𝐶P (𝑥) − 𝐶P (𝑦) ≥ 2 ⇒ 𝑥𝑃P𝑦, (4.2.1)

𝐶P (𝑥) − 𝐶P (𝑦) = 1 ⇒ 𝑥𝑃P𝑦 ∨ 𝑥𝑄P𝑦 ∨ 𝑥𝐾P𝑦, (4.2.2)

𝐶P (𝑥) − 𝐶P (𝑦) = 0 ⇒ 𝑥𝐼P𝑦 ∨ 𝑥𝑄P𝑦 ∨ 𝑦𝑄P𝑥 ∨ 𝑥𝐾P𝑦 ∨ 𝑦𝐾P𝑥, (4.2.3)

𝑥𝑃P𝑦 ⇒ 𝐶P (𝑥) > 𝐶P (𝑦) (4.2.4)

𝑥𝑄P𝑦 ∨ 𝑥𝐾P𝑦 ⇒ 𝐶P (𝑥) ≥ 𝐶P (𝑦) (4.2.5)

𝑥𝐼P𝑦 ⇒ 𝐶P (𝑥) = 𝐶P (𝑦) (4.2.6)

where ∨ is the disjunction operator.

6. There is a finite set 𝑇 of portfolios described by the set of criteria F ; each portfolio is assigned by

the DM each to one category of C. 𝑇 is called reference set.
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Our goal is to find a set of parameters P′
= {𝑤

′

1
,⋯ , 𝑤

′

𝑘
, 𝑣

′

1
,⋯ , 𝑣

′

𝑘
, 𝜆

′
, 𝛽

′

0
} (preference model), that

allows one to construct an interval-based outranking model consistent with Equations (4.2.1) to (4.2.6). To

achieve this, let us assume that a binary preference relation is built for each (𝑥, 𝑦) ∈ 𝑇 × 𝑇 for a given set

of parameters P′ and let us consider the following sets:

𝐻𝑃 = {(𝑥, 𝑦) ∶ 𝑥𝑃P′𝑦 with 𝐶P (𝑥) ≯ 𝐶P (𝑦)},

𝐻𝑄 = {(𝑥, 𝑦) ∶ 𝑥𝑄P′𝑦 ∨ 𝑥𝐾P′𝑦 with 𝐶P (𝑥) ≱ 𝐶P (𝑦)},

𝐻𝐼 = {(𝑥, 𝑦) ∶ 𝑥𝐼P′𝑦 with 𝐶P (𝑥) ≠ 𝐶P (𝑦)}.

It is plausible to assume that the cardinalities of these sets must be minimized in order to find the set

P′ with the minimum number of inconsistencies. Furthermore, a lexicographical order of importance is

evident in the minimization of these cardinalities. Thus, our proposal to find the “best” P′ is to solve the

following multiobjective optimization problem:

minimize

P′
∈Γ

(𝑐𝑎𝑟𝑑(𝐻𝑃 ), 𝑐𝑎𝑟𝑑(𝐻𝑄 ), 𝑐𝑎𝑟𝑑(𝐻𝐼 )), (4.2.7)

with preferential priority in lexicographical order favoring 𝑐𝑎𝑟𝑑(𝐻𝑃 ). In (4.2.7), Γ is the set of preference

models that fulfill Constraints (2.3.5) and (2.3.6) and 𝑐𝑎𝑟𝑑(𝜔) is the cardinality of set 𝜔.

4.3 System for approximating the DM’s preferences

In order to assess the proposal presented above, we now present a genetic-algorithms-based system that

will allow us to obtain approximate solutions to Problem (4.2.7).

Some current research reported in the literature, such as [67], conclude that Genetic Algorithms present

more promising results than other meta-heuristics, such as Particle Swarm optimization, Tabu Search and

Simulated Annealing, when solving multiobjective optimization problems similar to Problem (4.2.7) but

with real numbers. Consequently, in this workwe use aGenetic Algorithm capable to deal with parameters

defined as interval numbers in order to search for the solution of Problem (4.2.7).

The chromosomes in the proposed Genetic Algorithm consist of the interval based outranking param-

eters: 𝑤1,⋯ , 𝑤
𝑘
, 𝑣1,⋯ , 𝑣

𝑘
, 𝜆, 𝛽0. For example, if we assume that 𝑘 = 3, then the individual is formed as

shown in Figure 4.1.

There are 𝑘 + 2 crossing and mutation points. In order to fulfill consistency constraints (2.3.5) and

(2.3.6), the weights are all considered as only one gene. The points to perform the crossing and mutation

operations in the example are shown in Figure 4.2.
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Figure 4.1: Individual representing a solution to Problem (4.2.7), with 𝑘 = 3

𝑤1 𝑤2 𝑤3 𝑣1 𝑣2 𝑣3 𝜆 𝛽0

Figure 4.2: 𝑘 + 2 cutoff points for individuals, with 𝑘 = 3

1 2 3 4 5

𝑤1 𝑤2 𝑤3 𝑣1 𝑣2 𝑣3 𝜆 𝛽0

Mutation consists of the random generation of a gene. In the previous example, if gene 1 is selected

to mutate, then the set of weights would be randomly generated satisfying the consistency constraints

(2.3.5) and (2.3.6). If gene 2 is chosen to mutate, then a random value would be generated for the veto of

the first criterion, 𝑣1. The probability with which an individual is selected to mutate is 1

𝐿
, where 𝐿 is the

population size. The selection of parents in each generation of the genetic algorithm is done through a

binary tournament; the winning individuals in two tournaments are crossed in a single-point crossover

to generate an offspring individual.

Algorithm 3 describes the procedure. The algorithm first randomly creates an initial population of 𝐿

individuals, 𝑃0, fulfilling constraints (2.3.5) and (2.3.6). Each individual’s fitness is assessed from objectives

in Problem (4.2.7) and based on a reference set 𝜒𝑚 of cardinality 𝑚; that is, it calculates the number

of (preferentially ordered) inconsistencies where the individual allowed a different binary relation with

respect to 𝜒𝑚 . After that, and for each generation, from the current population 𝑃𝑔 the algorithm creates an

offspring 𝐻𝑔 using the chosen operators of Selection, Cross and Mutation, whose fitness is also assessed

using Problem (4.2.7). The next step is the combination of parents and descendants in a pool from which

the algorithm extracts the individuals with the best fitness. The individuals with the best fitness within

the pool form the next generation of parents, 𝑃𝑔+1. This procedure is repeated for 𝐺 generations. Later,

the algorithm returns the individual that represents the feasible solutions with the best fitness values in

the last population. This vector is obtained as the centroid (average of the parameters) of individuals

with the best fitness value. It can be demonstrated that if the centroid is obtained from a set of feasible

solutions, then such centroid is also feasible. In order to discard randomness in the procedure, we generate

𝐿 centroids. And, in order to take advantage of these centroids, we use them as a “seed population” for a

last run of the algorithm. The centroid generated in this final run is recommended as the best solution to

Problem (4.2.7).

It is possible to incorporate information into the genetic algorithm that will help to reduce the search

space. Some ways to add this type of information are the following.
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Algorithm 3 Algorithm proposed to address Problem (4.2.7)
Require: 𝐿, the population size; 𝐺, the number of generations; 𝜒𝑚, a reference set of

cardinality 𝑚.

Ensure: 𝜌𝑓 𝑖𝑛𝑎𝑙 , individual representing the population with the best fitness value.

1: 𝑖 ← 1

2: for 𝑖 ≤ 𝐿 do

3: 𝑔 ← 0

4: 𝑃𝑔 ← createInitialPopulation()

5: assessFitnessPopulation(𝑃𝑔 , 𝜒𝑚)

6: for 𝑔 ≤ 𝐺 do

7: 𝐻𝑔 ← createOffspring(𝑃𝑔 , selection, crossover, mutation)

8: assessFitnessIndividual(𝐻𝑔 , 𝜒𝑚)

9: 𝑃𝑔+1 ← obtainBest(𝑃𝑔 ⋃𝐻𝑔)

10: 𝑔 ← 𝑔 + 1

11: end for

12: 𝜌 ← findCentroid(𝑃𝑚−1)

13: end for

14: 𝑔 ← 0

15: 𝑃𝑔 ← {𝜌1, 𝜌2,⋯ , 𝜌𝐿}

16: for 𝑔 ≤ 𝐺 do

17: 𝐻𝑔 ← createOffspring(𝑃𝑔 , selection, crossover, mutation)

18: 𝑃𝑔+1 ← obtainBest(𝑃𝑔 ⋃𝐻𝑔)

19: 𝑔 ← 𝑔 + 1

20: end for

21: 𝜌𝑓 𝑖𝑛𝑎𝑙 ← findCentroid(𝑃𝑚)
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• The DM can assign values to some of the parameter boundaries. Because the parameters are ex-

pressed as interval numbers, it is relatively easy for the DM to assign the boundaries of some of

these parameters. For example, the DM can provide a value 𝜇𝑗 such that if the maximum attainable

difference between the performances of portfolios 𝑦 and 𝑥 in criterion 𝑔𝑗 is equal to or greater than

𝜇𝑗 (that is, if 𝑔−𝑗 (𝑦) − 𝑔+𝑗 (𝑥) ≥ 𝜇𝑗 ), then there is no doubt that 𝑥𝑆𝑦 must be vetoed. Therefore, it is

possible to limit the search space of the algorithm by doing 𝑣+
𝑗
= 𝜇𝑗 .

• The DM can express that criterion 𝑔𝑗 is more important than criterion 𝑔𝑖 . In this case, the algorithm

must ensure 𝑤−

𝑗
> 𝑤

+

𝑖
.

• It must be satisfied that 𝜆− > 0.5 and 𝜆+ < 1.

• It must also be satisfied that 𝛽0 > 0.5.

4.4 Validating our proposal to approximate the DM’s

preferences

This section details the experiments carried out to assess the proposal introduced in Section 4.2. The

assessment basically consists in validating the parameters generated by the system described in Section

4.3 in its ability to reproduce the DM’s preferences.

4.4.1 Creating experimental instances

To assess the proposal, it is necessary to simulate theDM’s decision policy, and to generate sets of instances

as case studies. For this purpose, we simulate the DM’s preferences through the random generation of

the parameter vector P . Each instance of the experiments consists of a reference set containing a finite

number of portfolios assigned to categories. Each portfolio is assigned to one of three categories: 𝐶3 =

𝐺𝑜𝑜𝑑 , 𝐶2 = 𝐷𝑜𝑢𝑏𝑡 and 𝐶1 = 𝐵𝑎𝑑 . If a portfolio cannot be assigned to one of the categories consistently

with Equations (4.2.1) to (4.2.6), then the current portfolio is rejected and a new portfolio is generated.

This procedure continues until the cardinality of the reference set is satisfied.

The first step to create a reference set is to determine a central profile for each category. The central

profiles of the categories are assigned in the following way. First, we randomly create a sufficiently large

set of portfolios described by the criteria in F . (Sets with 2000 portfolios are used in the experiments

described below.) Later, these portfolios are ranked through the outranking net flow score1 using the

1The net flow score is a very popular measure to rank a set of decision alternatives [105]. If 𝛽(𝑥, 𝑦)
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simulated parameter vector P . Finally, the central profile of a given class is defined as the action with the

most representative position within the whole rank. For example, the central profile of the lowest class

(𝐶1) is close to the position ⌈2000/6⌉. As stated above, Equations (4.2.1) to (4.2.6) must always be fulfilled

when assigning a portfolio to a category.

To assign the rest of portfolios to the categories, we follow the next procedure: i) randomly create a new

portfolio described by its impact in the criteria; ii) determine if it can be assigned to a category (fulfilling

Equations (4.2.1) to (4.2.6) and using P as the DM’s system of preferences); iii) if it cannot be assigned to

any category, go to step i; iv) if it can be assigned to just one category, assign the solution to that category;

v) if it can be assigned to more than one category, assign the portfolio to the central category among those

categories where the solution fulfills Equations (4.2.1) to (4.2.6).

The bounds of 𝑔𝑖(𝑥) = [𝑔
−

𝑖
(𝑥), 𝑔

+

𝑖
(𝑥)] are generated as 𝑔−

𝑖
(𝑥) = min{𝑑1, 𝑑2}, 𝑔+𝑖 (𝑥) = max{𝑑1, 𝑑2} where

𝑑𝑗 = min{10,max{1, 𝑖(1 − 𝜖𝑗 )}}, 𝑖 ∈ [1, 10], 𝜖𝑗 ∈ [−0.3, 0.3], 𝑗 = 1, 2, 𝑖 and 𝜖𝑗 are randomly generated. The

parameters of P are generated as follows. First, 𝛽0 is randomly generated in (0.5, 0.6) while the bounds

of the 𝑖-th veto are defined as 𝑣−
𝑖

= 0.7(𝑣𝑖) and 𝑣+𝑖 = 1.3(𝑣𝑖) where 𝑣𝑖 is randomly generated in [3,5].

We calculate the core values of the weights as �̂� =
1

𝑛
and the weight of criterion 𝑔𝑖 as [𝑤−

𝑖
= (1 − 𝜔𝑖)�̂� ,

𝑤
+

𝑖
= (1 + 𝜔𝑖)�̂�], where 𝜔𝑖 is randomly generated in [0,0.3]. The lower bound of 𝜆, 𝜆−, is randomly

generated in [0.51,0.76] and its upper bound is set as 𝜆+ = 1.3𝜆
−. For all cases 𝑖 = 1,⋯ , 𝑘.

During the optimization, these parameters are randomly generated in a similar way, but with wider

ranges of search: 𝛽0 and the bounds of 𝜆 are randomly generated in (0.5, 1), 𝜔𝑖 is randomly generated in

[0.1,0.5], and the bounds of 𝑣𝑖 are 𝑣−𝑖 = 0.5𝑣𝑖 and 𝑣+𝑖 = 1.5𝑣𝑖 .

4.4.2 Validation procedure

We consider that it is important to validate the effectiveness of our proposal when we deal with

• different decision models (e.g., different DMs);

• different number of criteria;

• different number of portfolios in the reference set;

• out-of-sample situations: testing the model’s capacity of generalization when approaching new

decisions on portfolios out of the reference set.

is a fuzzy preference relation on a set A ′, the net flow score associated to 𝑎 ∈ A ′ is defined as 𝐹𝑛(𝑎) =

∑
𝑐∈A ′

−{𝑎}
[𝛽(𝑎, 𝑐) − 𝛽(𝑐, 𝑎)] [98].
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We are particularly interested in testing the ability of our proposal to create a decision model that

reproduces the same preference relations and/or the same assignments as the DM. Therefore, we validate

this ability in the context of preference relations and in the context of ordinal classification. We use the

following validation procedure.

1. Use two sets of criteria with different cardinality to describe portfolios; namely, six and twelve

criteria.

2. Simulate the decision model of a DM through the random generation of the parameter vector P .

3. Create five reference sets, 𝜒10, 𝜒20, 𝜒30, 𝜒40, and 𝜒50, with cardinalities of 10, 20, 30, 40 and 50, respec-

tively, using three categories, 𝐶3 = 𝐺𝑜𝑜𝑑, 𝐶2 = 𝐷𝑜𝑢𝑏𝑡 and 𝐶1 = 𝐵𝑎𝑑 . We denote the assignment of

portfolio 𝑥 to category 𝑗 in the 𝑚-th reference set by the decision model P as 𝐶P𝑚
(𝑥) = 𝑗.

4. Obtain, through the system described in Subsection 4.3, a set of parameters P′ as consistent as

possible with the assignments made by the simulated DM (whose real decision model isP) in each

reference set. The maxima consistency is identified with the best compromise of Problem (4.2.7)

and the optimization is performed using Algorithm 3.

5. Obtain the in-sample effectiveness of the proposal when evaluated in the context of preference

relations as follows: first, determine the preference relation for each pair of portfolios (𝑥, 𝑦) ∈

𝜒𝑚 × 𝜒𝑚 , 𝑚 ∈ {10, 20, 30, 40, 50} through P′, and call it 𝑥𝑅′
𝑚
𝑦 , 𝑅 ∈ {𝑃, 𝑄, 𝐾, 𝐼}⋃{𝑂}. {𝑃, 𝑄, 𝐾, 𝐼}

is the set of preference relations described in bullet point 4 of Section 4.2, while 𝑂 indicates that

the relation between 𝑥 and 𝑦 is not in this set. It is necessary to note here that the definition of

the preference relations does not guarantee that one of the four relations will occur between 𝑥 and

𝑦 for P′. However, the way that the reference sets are created (Subsection 4.4.1) allows one of

these relations to be always hold between each pair of portfolios for P . Thus, the situation where

we cannot set one of these relations between each (𝑥, 𝑦) ∈ 𝜒𝑚 × 𝜒𝑚 for P′ shall be counted as an

inconsistency between P′ and P .

Finally, contrast the preference relation obtained through P′ with the one inferred from the as-

signments made by the DM of 𝑥 and 𝑦 to their respective categories in 𝜒𝑚 and calculate an error

indicator for the method in each instance of reference set 𝜒𝑚 as

𝜉𝑚 = ∑

(𝑥,𝑦)∈𝜒𝑚×𝜒𝑚

[𝜉𝑃𝑚
(𝑥, 𝑦) + 𝜉𝑄𝑚

(𝑥, 𝑦) + 𝜉𝐾𝑚
(𝑥, 𝑦) + 𝜉𝐼𝑚

(𝑥, 𝑦) + 𝜉𝑂𝑚
(𝑥, 𝑦)] (4.4.8)

where

𝜉𝑃𝑚
(𝑥, 𝑦) = 1 if 𝑥𝑃 ′

𝑚
𝑦 ⇒ 𝐶P𝑚

(𝑥) > 𝐶P𝑚
(𝑦) is false and 0 otherwise,

𝜉𝑄𝑚
(𝑥, 𝑦) = 1 if 𝑥𝑄′

𝑚
𝑦 ⇒ 𝐶P𝑚

(𝑥) ≥ 𝐶P𝑚
(𝑦) is false and 0 otherwise,

𝜉𝐾𝑚
(𝑥, 𝑦) = 1 if 𝑥𝐾 ′

𝑚
𝑦 ⇒ 𝐶P𝑚

(𝑥) ≥ 𝐶P𝑚
(𝑦) is false and 0 otherwise,

𝜉𝐼𝑚
(𝑥, 𝑦) = 1 if 𝑥𝐼 ′

𝑚
𝑦 ⇒ 𝐶P𝑚

(𝑥) = 𝐶P𝑚
(𝑦) is false and 0 otherwise,

𝜉𝑂𝑚
(𝑥, 𝑦) = 1 if 𝑥𝑂𝑦.
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Hence, the effectiveness of the method when evaluated in the context of preference relations is

defined as

1 −

𝜉𝑚

𝜂

(4.4.9)

(i.e., the strict negation of the proportion of errors with respect to the number of preference rela-

tions); where 𝜂 = 𝑚/2(𝑚 − 1), 𝑚 ∈ 10, 20, 30, 40, 50.

6. Obtain the out-of-sample effectiveness of the proposal as follows: first, use P to assign new port-

folios (different to the ones in the reference sets) as described in Subsection 4.4.1 (here we generate

sets of 100 portfolios). Later, use P′ to find the binary preference relations between pairs of these

new portfolios. Finally, determine the out-of-sample effectiveness of the proposal when evaluated

in the context of preference relations using an analogous validation method as the one used in step

5.

7. Obtain the out-of-sample effectiveness of the method when evaluated in the context of ordinal

classification as the proportion of coincidences between the assignments made by the DM and the

one made by the method through P′ and using also the method described in Subsection 4.4.1,

both using the portfolios created in step 6.

One instance of the experiment consists in a simulated DM, a given cardinality of the criteria set,

and a cardinality of the reference set. We consider 40 instances to be sufficient to perform a satisfactory

validation of the method using the validation process described in steeps 4 to 7.

4.4.3 Results

We use the system described above to assess our proposal in its ability finding a decision model such

that i) the interval-based outranking method can state the same binary preference relations as the ones

inferred from the assignments made by the simulated DM; and ii) a multicriteria methods suggest the

same assignments to pre-defined classes as the ones made by the simulated DM.

Validating our proposal in the context of preference relations

Here, we analyze the in-sample and out-of-sample effectiveness of our proposal to state the same binary

relation as the ones inferred from the assignments made by the simulated DM. Such analysis is performed

both in-sample and out-of-sample with respect to the actions in the reference sets. We evaluate the results

obtained when the portfolios are described by six and twelve criteria.

Actions described by six criteria
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In-sample effectiveness Table 4.3 shows the average effectiveness of our proposal, as calcu-

lated by Equation (4.4.9), and its standard deviation for each reference set. We calculated these results from

the effectiveness of our proposal in the 40 instances of the experiment. The Wilcoxon Signed-Ranks test

for two paired samples indicated that the difference of each pair of average performances is considered to

be statistically significant with a 0.95 confidence level. This means that the increments in the cardinality

of the reference sets allowed the model to increase its performance and shows the number of portfolios

that the DM should classify in order to obtain an expected performance.

Table 4.3: Average in-sample effectiveness of the proposal relative to preference relations for

each reference set using six criteria

Reference

set

Average

effectiveness

Standard

deviation

𝜒10 0.9822 0.0023

𝜒20 0.9992 1.36𝐸−05

𝜒30 0.9993 6.02𝐸−06

𝜒40 0.9996 2.21𝐸−06

𝜒50 0.9997 8.48𝐸−07

Evidently, an effectiveness lower than 100% is due to the error indicator, 𝜒𝑚 , being greater than zero.

Each of the error types, 𝜒𝑃𝑚 , 𝜒𝑄𝑚 , 𝜒𝐼𝑚 , and 𝜒𝑂𝑚 , has a different level of proportion in the total error (step

5 of Section 4.4.2). Table 4.4 shows the average ratio in 𝜒𝑚 of each of the error types.

Table 4.4: Average proportion of each type of error in 𝜒𝑚

Reference

set
𝜉𝑃𝑚

(𝑥, 𝑦) 𝜉𝑄𝑚
(𝑥, 𝑦) 𝜉𝐾𝑚

(𝑥, 𝑦) 𝜉𝐼𝑚
(𝑥, 𝑦) 𝜉𝑂𝑚

(𝑥, 𝑦)

𝜒10 0.43 0 0 0.14 0.43

𝜒20 0.66 0 0.03 0.03 0.28

𝜒30 0.64 0 0 0.16 0.20

𝜒40 0.61 0.01 0.03 0.07 0.28

𝜒50 0.59 0 0.01 0.12 0.28

Table 4.4 indicates that inconsistencies respect to the strict preference provide most of the error en-

compassed in the global error. Of course, not all preference relations occur with the same frequency in the

experiment. Actually, it is the strict preference the one with the highest frequency, so it is not surprising
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that 𝜒𝑃𝑚 has the largest proportion in the error indicator. Table 3 shows the effectiveness with respect to

the frequency of each preference relation. This effectiveness is obtained as the average number of times

that the preference relation inferred from the simulated DM’s assignments and the preference relation

found through P′ coincide. For example, with cardinality equal to 50, there are 819 pairs on average (in

the 40 instances) where strict preference exists, according to the P′ model. Nevertheless, the 𝜒𝑃𝑚 indica-

tor was only 2 on average (that is, there were only two times where 𝑥𝑃 ′
50
𝑦 ⇒ 𝐶𝑃50

(𝑥) > 𝐶𝑃50
(𝑦) was false,

out of the 819 opportunities where it could happen). Thus, for the case of strict preference, the model has

an effectiveness of 99.76% in 𝜒50.

Table 4.5: Average effectiveness by preference relation

Reference set 𝑃 𝑄 𝐾 𝐼

𝜒10 0.9973 1.0000 0.9999 1.0000

𝜒20 0.9994 1.0000 0.9999 0.9998

𝜒30 0.9997 1.0000 1.0000 1.0000

𝜒40 0.9999 1.0000 1.000 1.0000

𝜒50 0.9976 1.0000 1.0000 0.9997

Tables A.1 to A.4 of Appendix A show the comparison of the models P and P′ in reference sets 𝜒30.

The parameter values are rather similar, although there are some significant deviations. But the really

important feature of the indirect elicited parameters is to allow making decisions consistent with the

reference sets, even when this set of parameters is not alike the ones of the simulated DM.

Out-of-sample effectiveness The final goal of the PDA paradigm is to create a decisionmodel

consistent with the DM’s preferences; so, the decision model should suggest decisions that may be consid-

ered appropriate by the DM. In this subsection we assess out-of-sample the effectiveness of our proposal

to find such model; that is, we use the decision models built by the proposed approach to determine bi-

nary preference relations between actions different to the ones within the reference sets. We analyze the

method’s capability to “predict” the preference relation between pairs of portfolios described by six criteria

such as the DM would have done it, considering a set of 100 assignments other than those in the original

reference sets. These assignments are performed by the same simulated DMs for whom the preference

models P′ were created. We measure this effectiveness based on the solution generated by our method

in each instance per reference set using the same effectiveness measure from the previous section.

Table 4.6 shows the average effectiveness of the proposed method and its standard deviation for each

cardinality of the original reference sets used to build P′. Unlike the results obtained in the in-sample

test (Table 4.3), here some pairs of average performances are not statistically different; namely, those
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of reference sets 𝜒20 and 𝜒30, and 𝜒40 and 𝜒50. Furthermore, when performing the same statistical test

(Wilcoxon Signed-Ranks test for two paired samples with 0.95 confidence level) between the respective

reference sets of the in-sample and out-of-sample effectiveness, we saw that the high performance of the

model was not maintained when the cardinality of the reference sets was increased to 12 criteria.

Table 4.6: Average out-of-sample effectiveness of the proposal relative to preference relations

for each reference set using six criteria

Reference

set

Average

effectiveness

Standard

deviation

𝜒10 0.9270 0.1150

𝜒20 0.9878 0.0137

𝜒30 0.9891 0.0151

𝜒40 0.9946 0.0061

𝜒50 0.9947 0.0080

Twelve criteria

In-sample effectiveness Here we show the results obtained when carrying out experiments

with portfolios described by twelve criteria. Table 4.7 shows the first results. In this table we can see that

the effectiveness of the proposed method when it worked with portfolios described by twelve criteria is

actually not worse than with portfolios described by six criteria. The procedure to obtain these results is

the same as the one stated in Section 4.4.3.

Table 4.7: Average in-sample effectiveness of the proposal relative to preference relations for

each reference set using twelve criteria

Reference

set

Average

effectiveness

Standard

deviation

𝜒10 0.9794 0.0018

𝜒20 0.9992 5.04𝐸−06

𝜒30 0.9995 1.95𝐸−06

𝜒40 0.9998 2.15𝐸−07

𝜒50 0.9996 7.84𝐸−07
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Out-of-sample effectiveness We show now the method’s capability to predict the preference

relation between pairs of portfolios when these are different to the reference sets used by the approach to

build P′. Table 4.8 shows the average effectiveness of the indirect elicitation proposal and its standard

deviation for each reference set. The portfolios are described by twelve criteria and the procedure to obtain

the results is stated in Section 4.4.3.

Table 4.8: Average out-of-sample effectiveness of the proposal relative to preference relations

for each reference set using twelve criteria

Reference

set

Average

effectiveness

Standard

deviation

𝜒10 0.8634 0.1401

𝜒20 0.9820 0.0184

𝜒30 0.9882 0.0158

𝜒40 0.9911 0.0125

𝜒50 0.9937 0.0106

Validating our proposal in the context of ordinal classification

We show in this section the results of further experiments where the quality of the found decision models

to assign the portfolios in preferentially ordered categories is revised. We analyze this quality by com-

paring the assignments made by the simulated DM with those made using the decision policies found by

the proposed approach. The quality is evaluated out-of-sample using the method described in Subsection

4.4.1 (originally used to create the reference sets).

According to the procedure presented in Section 4.4, we have now the decision models created by our

method in two sets of experiments. In the first set, the DM expressed her/his preferences on portfolios

described by six criteria, while in the second set, the portfolios were described by twelve criteria. Fur-

thermore, in each set of experiments, five reference sets with 10, 20, 30, 40 or 50 portfolios were used. We

consider now a new set of 100 portfolios assigned by the DM to the three categories. The assignments

in this set are performed by the DM using the method described in Subsection 4.4.1. Later, we use the

decision models created by our method in the two sets of experiments to contrast the assignments. The

effectiveness is thus defined as the proportion of times that the model reproduced the assignments made

by the DM. The simulated DMs and the decision policies found by our approach that are used during the

experiments below are the same as the ones used in Subsection 4.4.3 (see also the validation procedure in

Subsection 4.4.2).
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Out-of-sample effectiveness in the context of ordinal classification We define

the out-of-sample effectiveness of the approach in the context of ordinal classification as the proportion

of times that the assignments, made using the procedure described in Subsection 4.4.1 and the decision

models found by the proposed approach, coincide with thosemade by the DM in the new set of 100 actions.

Table 4.9 shows this effectiveness per reference set for actions described both by six and twelve criteria.

Table 4.9: Average in-sample effectiveness of the proposal relative to ordinal classification for

each reference

Reference set
Average effectiveness

Six criteria Twelve criteria

𝜒10 0.8938 0.8433

𝜒20 0.9210 0.9345

𝜒30 0.9013 0.9003

𝜒40 0.9430 0.8603

𝜒50 0.9625 0.8495



Chapter 5

A novel approach to select the best

portfolio incorporating the

preferences of the decision maker

This chapter presents our approach to allocate resources to a set of investment objects. The approach

models the investor’s preferences in order to find the most satisfactory portfolio from his/her perspective

when many objective functions are considered. The estimations of the portfolios’ future returns, the

risk of not attaining those returns and the investor’s behavior to this risk are all represented through

probabilistic confidence intervals (Chapter 3). The imperfect knowledge related to the subjectivity of

the investor is modeled on the basis of Interval Theory (Subsection 2.2) and the interval-based outranking

method (Subsection 2.3.4), allowing us to obtain an approximation to the investor’s preferences even when

these are ill-determined, imprecise, uncertain or arbitrary (even missing, Chapter 4). These preferences

are used by the proposed approach to perform an aggregation of all the criteria. Thus, a selective pressure

towards the investor’s most preferred portfolios is produced, while the investor’s cognitive effort in the

final selection is reduced.

An illustrative example in the context of stock portfolio optimization is provided, where several in-

vestors interested in many criteria are simulated and historical real data is used. The criteria are related to

the confidence intervals around the portfolios’ returns, and indicators from the so-called fundamental and

technical analyses. The performance of our approach is compared with that of an outstanding multiob-

jective evolutionary algorithm, MOEA/D, and some well-known benchmarks in Modern Portfolio Theory

and Finance Theory, namely, the Mean-Variance approach and the Dow Jones Industrial Average index.

The results show an evident superiority of the proposed approach in both the context of the underlying

101
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criteria (confidence intervals and financial indicators) and the context of the actual returns. Moreover,

the DM’s satisfaction and the effectiveness in reproducing the DM’s decisions using the indirect elicita-

tion of preferences described in Chapter 4 are evaluated and compared with those of a direct elicitation

procedure. The results show an evident superiority of the former approach. Thus, we conclude that the

proposed approach was able to find satisfactory portfolios in the context of the experiments. Finally, some

recommendations about the criteria used in the illustrative example are provided.

5.1 Introduction

In modern society, many objectives are commonly contemplated when generating portfolios (see [15,270,

309,310]). Some of the objectives most commonlymentioned in the related literature are (Subsection 2.1.2):

• Maximization of the portfolio’s return (e.g., [195,264]).

• Maximization of social responsibility and ethical considerations (e.g.., [123,128,279]).

• Maximization of liquidity (e.g., [9,158]).

• Maximization of return with respect to some benchmarks (see [270]).

• Maximization of the amount invested in R&D (see [270]).

• Minimization of transaction costs (e.g., [193,297]).

From all these objectives, the most outstanding one is maximization of the portfolio’s return/profit

[264]. This is sometimes the only objective optimized during the allocation of resources; however, given

the high complexity involved in the return’s forecasting procedure, many criteria (e.g., expected return,

risk, so-called fundamental and technical analyses) usually underlie such objective. Here, we will address,

without loss of generality, the latter situation.

Investors frequently use decision-aiding tools in order to obtain a set of portfolios representing, to a

certain extent, the best feasible allocations of resources. But this does not solve the problem; the investor

still must choose from among all these portfolios the one that represents the best compromise among the

considered criteria. But, as reported by Miller [207], this is not a trivial task since the cognitive limitations

make it very difficult for the investor to consistently select the best compromise in the presence of many

criteria. This becomes more complicated when she/he needs to make trade-offs between risk and return,

and when the criteria values are defined as interval numbers. Consequently, a more convenient approach

must be followed; the goal of such an approach must be to provide a minimal set of portfolios satisfying

the investor’s preferences. The main objective of this work is thus to propose an approach able to deal
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with many criteria in order to create a portfolio that satisfies the preferences of the investor. That is, our

approach is intended to find the most preferred portfolio.

Since the groundbreaking work of Markowitz [195], many authors have presented interesting meth-

ods to create portfolios with the objective of maximizing the portfolio return (see e.g., [88,126,152,162]).

Many types of criteria beyond Probability Theory are usually considered by real investors (decision mak-

ers, DMs). These criteria range, for example, from financial information of the investment objects to the

behavior of their returns through time. There are two main perspectives that consider these criteria in

the context of stock portfolios: one, the so-called fundamental analysis, mainly uses ratios to express the

real (and probably hidden) value of the companies underlying the stocks (see e.g., Ref. [287]); whereas

the other, the so-called technical analysis, principally uses signals that indicate the goodness of time to

execute stock transactions by analyzing their serial returns over time (see e.g., Ref. [19]). These two types

of indicators together with the approximation to the probability distribution of the returns constitute the

most mentioned criteria in the literature of stock portfolio optimization. The necessity of considering all

these aspects during the allocation of resources come from the high volatility of the stocks’ returns and

the complexity to estimate them. Furthermore, sometimes there is just a too short performance history

of some stocks as to obtain a reliable approximation to their probability distribution, and/or insufficiency

of available financial information. Hence, addressing a many-criteria optimization problem (i.e., an op-

timization problem with more than three criteria) describing all these perspectives can be required. On

the other hand, the allocation of resources requires the investor to analyze several solution alternatives in

order to find the most preferred one. Thus, the decision maker’s preferences must necessarily be contem-

plated. A viable option is to incorporate these preferences in the portfolio optimization process. However,

the formulation of all these many aspects in a multicriteria problem to select the best portfolio according

to the investor’s perspective is scarce. We believe that the lack of popularity of such an approach is mainly

due to its high computational cost, caused by an overwhelming number of points in the optimization’s

search space. Indeed, considering many (more than three) criteria makes the search space grow to a size

that makes the Portfolio Optimization Problem not solvable by exhaustive methods. Moreover, the num-

ber of alternative solutions in the Pareto front for such problems tend to be also overwhelming, making

it very hard for the investor to reach a final decision about what he/she considers the best portfolio.

In order to find the best portfolio, the solution that offers the best compromise among the criteria must

be found using the decision maker’s particular system of preferences (decision policy). That is, since all

the solutions within the Pareto front are mathematically equivalent, the DM should provide additional

information for choosing the most preferred one (cf. [129]). This implies that it is necessary to consider

the subjectivity of the investor in aspects such as her/his attitude facing risk, the importance that she/he

assesses to each criterion, and certain thresholds that dictate when the investor considers that a portfolio

is at least as good as another. If these aspects are considered during the search process, a privileged

zone within the Pareto front called region of interest can be found (cf. [142]). Nonetheless, incorporating
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the DM’s subjectivity could be a hard task, mainly due to: i) the imperfect knowledge about the true

values of the parameters representing the investor’s subjectivity, and ii) the cognitive effort required from

the DM to reduce this source of imprecision. This implies hardness to guarantee that the preferential

information directly provided by the DM precisely coincides with his/her actual decisions. Some authors

(e.g., [216]) argue that the only valid information that the decision maker can provide about his/her own

preferences is in the form of concrete decisions. Furthermore, the direct elicitation process presents several

important problematics. For example, more often than not, the access/availability/constancy of investors

to engage in a complete explanation of their implicit preferences is limited. It is more common for investors

to be willing to participate just in the first step of the optimization process and they tend to feel more

comfortable expressing decisions than explaining them. These situations must necessarily be taken into

account when modeling preferences in decision aiding [246]. However, to the best of our knowledge,

there are not published papers that deal with this type of difficulty when the subjectivity of the investor

is incorporated in the Portfolio Optimization Problem considering many criteria. Here, we intend to fill

this gap through an approach that allows the investor to consider as many criteria as she/he requires,

considers the risk of not attaining the forecasted impacts on these criteria, incorporates the investor’s

behaviour facing this risk and takes into account her/his preferences in the search process.

In this work, we assume that the situation where the DM is not willing/capable to provide preference

information in an interactive way holds and propose an a priori approach based on the outrankingmethod.

Unlike other ways of modeling preferences, the outranking method is able to deal with i) ordinal and

qualitative information, ii) zones of uncertainty in the investor’smind, iii) intransitive preferences, iv) non-

compensatory effects and veto situations, and v) incomparability between solutions. The main argument

against the outranking method is its requirement for many preference parameters and the difficulty of

eliciting them. Thus, we use here the recent generalization of the outranking method proposed in Ref.

[97] (Subsection 2.3.4) that defines the preference parameters as ranges of values instead of defining them

as punctual values. So, the DM is now capable to directly provide the parameters values that are most

representative of his/her preferences and a well-suited portfolio might be found according to the DM’s

decision policy. Below we provide evidence that, even when this new ability of the outranking method

makes it easier to directly elicit the DM’s preference values, the indirect elicitation proposed in Chapter 4

allows to obtain statistically better (more preferred) solutions.

An illustrative example in the context of the stock Portfolio Optimization Problem is provided. The

dataset used in the validation consists in the actual monthly returns of the stocks within the Dow Jones

Industrial Average (DJIA, Subsection 2.1.4.3) index during the period April 2011-March 2016. The pro-

posed approach is evaluated in both the context of the original criteria and in the context of the actual

returns. With respect to the former, we demonstrate that the portfolios constructed by our approach are

satisfactory from the investor’s perspective. With respect to the latter, comparisons with the actual re-

turns of the DJIA index and other benchmarks show that the performance of the proposed approach is
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evidently better.

The chapter is structured as follows. Our proposal is detailed in Section 5.2. Section 5.3 provides the

validation process and shows the results obtained. Within Section 5.3, we first formalize the problem

that the proposed approach will address, later we describe the experimental design followed to assess our

approach’s effectiveness and, finally, the results of this assessment are provided.

5.2 A bi-criteria formulation based on Fuzzy Logic

In order to formalize our proposal, we first assume that the DM’s implicit system of preferences can be

represented by the set of parametersP = {𝑤1,⋯ , 𝑤
𝑘
, 𝑣1,⋯ , 𝑣

𝑘
, 𝜆, 𝛽0}. This set of parameters allows us to

build an interval-based outranking relation between pairs of portfolios. Then, we take advantage of this

method’s capacity to estimate the likelihood of the following two statements: i) “portfolio 𝑥 is at least as

good as portfolio 𝑦” and ii) “portfolio 𝑥 dominates portfolio 𝑦” (see Subsection 2.3.4). With such values,

we then obtain a non-outranked likelihood degree to estimate how “preferred” a portfolio is with respect

to a given set of portfolios.

In the context of real-valued parameters, Fernandez et al. [95,98] define a portfolio 𝑥 to be strictly-non-

outranked if and only if there is not a portfolio 𝑦 such that 𝑦 dominates 𝑥 , or if 𝑦 outranks 𝑥 and 𝑥 does

not outrank 𝑦 . Formally:

𝑥 is non-outranked⇔ ¬∃𝑦 ∶ 𝑦𝐷𝑥 ∨ (𝑦𝑆𝑥 ∧ ¬𝑥𝑆𝑦)

≡ ∀𝑦 ∶ ¬𝑦𝐷𝑥 ∧ (¬𝑦𝑆𝑥 ∨ 𝑥𝑆𝑦).

Using 𝜇 to denote “truth degree” and the strict negation operator, we formulate the previous definition

in terms of Multivalent Logic as:

𝜇(𝑥 is strictly non-outranked) = 𝜇(∀𝑦 ∶ ((1 − 𝜇(𝑦𝐷𝑥)) ∧ ((1 − 𝜇(𝑦𝑆𝑥)) ∨ 𝜇(𝑥𝑆𝑦)))).

Among different logic approaches, we use here the so-called Compensatory Fuzzy Logic [83,86], which

has several desirable properties for rational decision-making (Subsection 2.5.4). The compensatory logic

operators for conjunction have as limits the minimum operator [300]. Other compensatory logic opera-

tors are the arithmetic mean and the geometric mean. The latter is considered as the simplest among the

quasi-arithmetic means (cf. [83,86]). Unlike the minimum operator, the geometric mean satisfies the strict

growth axiom of the compensatory fuzzy logic [82]. In this work, the conjunction and disjunction opera-

tors from Compensatory Fuzzy Logic based on the geometric mean are taken to obtain a non-outranked

degree as follows.
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Let 𝑈 be the universe of portfolios within the Pareto front of Problem (1.2.1). For each pair (𝑥, 𝑦) ∈

A × A , A ⊆ 𝑈 , it is possible to obtain through the interval-based outranking approach: i) a likelihood

index of the assertion “𝑥 outranks 𝑦”, denoted by 𝛽(𝑥𝑆𝑦); ii) a likelihood index of the assertion “𝑦 outranks

𝑥”, denoted by 𝛽(𝑦𝑆𝑥); and iii) a likelihood index of the assertion “𝑥 dominates 𝑦”, denoted by 𝑥𝐷𝛼𝑦 . Now,

let us make 𝜇(𝑥𝑆𝑦) = 𝛽(𝑥𝑆𝑦), 𝜇(𝑦𝑆𝑥) = 𝛽(𝑦𝑆𝑥), 𝜇(𝑥𝐷𝑦) = 𝑥𝐷
𝛼
𝑦 , �̂� = A − {𝑥} and 𝑛 = 𝑐𝑎𝑟𝑑(�̂�), then we

define the non-outranking truth degree of 𝑥 in A by means of the compensatory fuzzy logic based on the

geometric mean as (cf. [82] and Subsection 2.5.4):

𝑁𝑆A (𝑥) =
𝑛

√

(𝑁𝑆(𝑥, �̂�).

Where

𝑁𝑆(𝑥, �̂�) = ∏

𝑦∈�̂�

√

((1 − 𝜇(𝑦𝐷𝑥))(1 −

√

((1 − (1 − 𝜇(𝑦𝑆𝑥)))(1 − 𝜇(𝑥𝑆𝑦)))))

A high non-outranked degree of portfolio 𝑥 indicates the lack of arguments to believe that there are

solutions better than 𝑥 . On the other hand, a high non-outranked degree is a necessary condition to be

the best compromise, but it is not sufficient. A solution may have a high non-outranked degree and be

incomparable with all or many of the solutions in the known Pareto front. Positive alternative arguments

are required to affirm the superiority of 𝑥 over the other optimal solutions under consideration.

In order to enhance the preference information, here we suggest to use the outranking net flow score.

This is a very popular measure to rank a set of decision alternatives on which a fuzzy preference relation is

defined (cf. [104]). If 𝛽(𝑥𝑆𝑦) is an outranking likelihood index on setA , then the net flow score associated

to 𝑥 ∈ A is defined as 𝐹𝑛(𝑥) = ∑
𝑦∈A −{𝑥}

(𝛽(𝑥𝑆𝑦) − 𝛽(𝑦𝑆𝑥)). Note that 𝐹𝑛(𝑥) > 𝐹𝑛(𝑦) is an asymmetric

and transitive binary relation on A , indicating to some extent preference of 𝑥 over 𝑦 . So, the net flow

score may be used to select the most satisfactory solution between 𝑥 and 𝑦 when 𝑁𝑆A (𝑥) = 𝑁𝑆A (𝑦).

Nonetheless, always that 𝑁𝑆A (𝑥) > 𝑁𝑆A (𝑦), the DM can be confident that portfolio 𝑥 provides her/him

more satisfaction than portfolio 𝑦 , regardless the values of 𝐹𝑛(𝑥) and 𝐹𝑛(𝑦). Therefore, a best compromise

solution can be found through a lexicographic search.

Taking into account the non-outranking truth degree and the net flow score information, we propose

to select the best solutions for Problem (1.2.1) as the non-dominated set of solutions obtained from:

maximize

𝑥∈Ω

{𝑁𝑆A (𝑥), 𝐹𝑛(𝑥)} (5.2.1)

with preemptive priority favoring 𝑁𝑆A (𝑥), where Ω is the set of feasible portfolios.
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5.3 An illustrative example: a highly risk-averse in-

vestor interested in many criteria

We present in this section a study case where the proposed approach is used to create portfolios on the

basis of many criteria. We assume that the DM is interested in using confidence intervals (Chapter 3),

fundamental indicators (Subsection 2.1.4.1), and technical indicators (Subsection 2.1.4.2) as underlying

criteria to the maximization of portfolio return. This assumption reflects that there are some scenarios

where the DM is not fully satisfied with the information provided by the statistical analysis nor by the

financial analyses. Of course, the assumption made in this illustrative example can be adjusted according

to the specific context and DM’s requirements.

5.3.1 Problem definition

Although the fundamental and technical analyses are widely used by investors in the real world, the com-

bination of both types of analyses is not common in the academic literature (see Section 2.1.4). Even

less common is the combination of fundamental analysis, technical analysis and decisions on propor-

tions in which the resources should be allocated. Nevertheless, the statistical information might not be

available/reliable, and/or the financial information might not be enough to involve the risk caused by the

return’s volatility. Hence, the DM would consider valuable to perform a portfolio optimization where all

the criteria are combined in a multicriteria optimization problem. To the best of our knowledge, there are

no published works in the related literature considering the three analyses in a multicriteria optimization

problem that is also capable of representing the DM’s attitude facing risk as well as her/his decision policy

in the context of Portfolio Optimization Problem with many criteria.

There are papers in which some of these analyses are used consecutively (e.g., [103,287]). Typically,

the fundamental analysis is performed first in order to select the stocks that will be in the portfolio; the

technical analysis is performed secondly to determine the time convenience of investing in each stock;

finally, the portfolio creation analysis is carried out afterwards to define the allocation proportions to be

assigned. Thus, the value of each financial indicator is evaluated individually for each stock. Since our

purpose is to select the approximation to the best portfolio, our solution alternatives are not individual

stocks, but portfolios. Hence, we use here a way of evaluating portfolios through financial indicators; such

way is on the basis of Fuzzy Logic. Particularly, Fuzzy Logic is used to define the truth degree of each

stock being “good” according to the financial indicators. Let us now describe our proposal to determine a

quality index of a portfolio on the basis of these analyses.
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5.3.1.1 Fundamental analysis as a criterion to evaluate portfolios

In order to determine a comprehensive quality index of a portfolio with respect to the fundamental indi-

cators, we first need to assess each of the stocks within the portfolio. We assume that a stock is good from

the fundamental analysis’ viewpoint if the following two conditions are fulfilled:

i. In a significant majority of the fundamental indicators considered, the value of each indicator reaches

a sufficiently high level.

ii. No indicator has a value significantly lower than certain threshold 𝑛2.

To model the truth degree of condition i, it is only necessary to define what the DM means by “an

important majority” (represented by a relative value 𝜏 ) and “a sufficiently high level” (represented by a

relative number 𝑛1)). A piecewise linear function 𝐻 can be used here, where the independent variable is

the proportion 𝐷 of indicators that reach level 𝑛1, and fulfills: a) 𝐻 = 0 if 𝐷 is not greater than 0.5, b) 𝐻

linearly increases to 1 when 𝐷 grows from 0.5 to 𝜏 , and c) 𝐻 is 1 for values of 𝐷 not lower than 𝜏 . Thus,

𝐻 can be defined as follows:

𝐻 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0 𝐷 ≤ 0.5,

(𝐷 − 0.5)/(𝜏 − 0.5) 0.5 < 𝐷 < 𝜏 ,

1 𝐷 ≥ 𝜏 .

The truth degree of condition ii can be modeled by a piecewise linear function 𝑓 𝑖
𝑗
where the value of

the 𝑗th fundamental indicator when analyzing the 𝑖th stock, 𝑣𝑎𝑙𝑢𝑒𝑖
𝑗
, is the independent variable and 𝑓 𝑖

𝑗

has the following characteristics: a) 𝑓 𝑖
𝑗
is zero when the value of the indicator is not greater than the level

𝑛𝑣𝑒𝑡𝑜 , b) 𝑓 𝑖𝑗 linearly increases to 1 when the value of the indicator moves from 𝑛𝑣𝑒𝑡𝑜 to 𝑛2, and c) 𝑓 𝑖
𝑗
is 1

when the value of the indicator is not lower than 𝑛2. Thus, 𝑓 𝑖𝑗 can be defined as follows:

𝑓
𝑖

𝑗
=

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0 𝑣𝑎𝑙𝑢𝑒
𝑖

𝑗
≤ 𝑛𝑣𝑒𝑡𝑜 ,

(𝑣 − 𝑛𝑣𝑒𝑡𝑜)/(𝑛2 − 𝑛𝑣𝑒𝑡𝑜) 𝑛𝑣𝑒𝑡𝑜 < 𝑣𝑎𝑙𝑢𝑒
𝑖

𝑗
< 𝑛2,

1 𝑣𝑎𝑙𝑢𝑒
𝑖

𝑗
≥ 𝑛2.

The truth degree that all indicators have value greater than or equal to 𝑛2 when evaluating the 𝑖th stock,

is obtained by the conjunction of the values of all 𝑓 𝑖
𝑗
. An evident compensation exists among such values.

Hence, we propose to use the conjunction of the Compensatory Fuzzy Logic based on the geometric mean

(cf. Refs. [82,83,86] and Subsection 2.5.4).

Finally, the truth degree of the 𝑖th stock being good from the fundamental analysis’ viewpoint, 𝐹𝑖 , is

obtained by the conjunction of the truth values of conditions i and ii. There is no compensation in such

conjunction. Hence, we propose to use here the product norm as the conjunction operator.
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The aggregation to evaluate the portfolio from this viewpoint then becomes:

𝐹 (𝑥) =

𝑛

∑

𝑖=1

𝐹𝑖𝑥𝑖 .

5.3.1.2 Technical analysis as a criterion to evaluate portfolios

The evaluation of individual stocks using the technical analysis described in Section 2.1.4.2 consists in

finding the convenience of investing in the stocks. Particularly, if the rule associated to the 𝑗th technical

indicator states that the 𝑖th stock is good, then such indicator takes a value of 1 (𝑖𝑡 𝑖
𝑗
= 1), otherwise its

value is 0 (𝑖𝑡 𝑖
𝑗
= 0). Therefore, the aggregation

𝑇𝑗 (𝑥) =

∑
𝑛

𝑖=1
𝑥𝑖 𝑖𝑡

𝑖

𝑗

𝑛

,

represents the desirable momentum proportion of the stocks supported by portfolio 𝑥 from the 𝑗th tech-

nical indicator perspective. A final aggregation of the technical indicators can be performed to obtain the

goodness of portfolio 𝑥 in the technical analysis’ viewpoint:

𝑇 (𝑥) =

∑
𝑇𝑁

𝑗=1
𝑇𝑗

𝑇𝑁

,

where 𝑇𝑁 is the number of technical indicators considered.

5.3.1.3 Multicriteria optimization problem

Of course, there is some uncertainty involved in the definitions of 𝐹 (𝑥) and 𝑇 (𝑥) originated in the finite-

precision arithmetic provided by computers. Hence, we take advantage of Interval Theory and redefine

the financial indicators as interval numbers:

𝐹 (𝑥) = [𝐹 (𝑥)
−
, 𝐹 (𝑥)

+
]. (5.3.2)

Where 𝐹 (𝑥)− is 𝐹 (𝑥) rounded down to four digits, and 𝐹 (𝑥)− is 𝐹 (𝑥) rounded up to four digits. The same

procedure is followed with the technical indicators to create 𝑇 (𝑥):

𝑇 (𝑥) = [𝑇 (𝑥)
−
, 𝑇 (𝑥)

+
]. (5.3.3)

Both 𝐹 (𝑥) and 𝑇 (𝑥) can be seen as quality indexes indicating the convenience of investing in portfolio

𝑥 .

On the other hand and accordingly to Subsection 3.4.1, a highly risk-averse DM can be simulated as the

one who requires information about two confidence intervals: one containing the expected return with a
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70% of probability, 𝜃𝛾70 (𝑥), and another containing it with the 99% of probability, 𝜃𝛾99 (𝑥) (see Chapter 3 for

the motivation on using confidence intervals). Here, as in Ref. [264], three constraints are used: budget,

non-negativity, and bounds on individual stocks constraints.

Therefore, we assess the approach proposed in this thesis through its solutions’ performances when

solving the following multicriteria optimization problem on the basis of confidence intervals and financial

indicators:

maximize

𝑥∈Ω
(𝜃𝛾70

(𝑥), 𝜃𝛾99
(𝑥), 𝐹 (𝑥), 𝑇 (𝑥)) . (5.3.4)

Where Ω is the set of portfolios fulfilling the following constraints:

∑ 𝑥𝑗 = 1 → Budget constraint;

𝑥𝑗 ≥ 0 → Non-negativity constraints;

𝑥𝑗 ≤ 0.4 → Bounds on individual stocks.

And where

𝑥𝑗 is the proportion of resources allocated to the 𝑗th stock,

𝜃70(𝑥) = [𝛼70, 𝛽70] ∶ 𝑃 (𝛼70 ≤ 𝑅(𝑥) ≤ 𝛽70) = 0.70,

𝜃99(𝑥) = [𝛼99, 𝛽99] ∶ 𝑃 (𝛼99 ≤ 𝑅(𝑥) ≤ 𝛽99) = 0.99,

𝑅(𝑥) is a random variable representing the actual return of portfolio 𝑥 ,

𝐹 (𝑥) is the evaluation of portfolio 𝑥 from the fundamental analysis’ viewpoint (Equation (5.3.2)),

𝑇 (𝑥) is the evaluation of portfolio 𝑥 from the technical analysis’ viewpoint (Equation (5.3.3)), and

𝑗 = 1,⋯ , 𝑛.

Given the exponential increase in the number of solutions required for approximating the entire Pareto

front of Problem (5.3.4), an incorporation of the DM’s preferences is desirable [142]. Several authors (e.g.,

[71,72,142]) argue that it is common for evolutionary multiobjective optimization methodologies to suffer

serious difficulties when dealing with four or more criteria. One of these difficulties is the need of a larger

number of points to represent a higher-dimensional Pareto optimal front. Such difficulty is worsenedwhen

the criteria in the optimization problem are defined as interval numbers. Therefore, finding a preferred

and smaller set of Pareto-optimal solutions, instead of the entire front, tends to be beneficial for the search

process [72] and it can be achieved by incorporating preference information in the search process [102,

277].
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5.3.2 Experimental design

Aiming to provide an extensive assessment of our approach, we present in this subsection an analysis

procedure where the two manners to elicit the investor’s system of preferences are used, namely the

direct and indirect procedures. In order to be able to compare the performance of our approach in both

scenarios, we assume that i) the DM’s actual preference model is in terms of the interval-based outranking

model, and ii) the actual values of the parameters in the preference model are already known. Thus, we

first obtain these actual values (through simulation) and later use the elicitation methods to obtain an

approximation to such values. Let us now describe the simulation procedure used during the assessment

of our approach.

5.3.2.1 Simulation of decision makers

During the experiments, we first generate 20 decisionmodels at random that represent 20 decisionmakers’

decision policies. That is, we create 20 sets of parameters P 𝑖
= {𝑤

𝑖

𝑗
, 𝑣

𝑖

𝑗
, 𝜆
𝑖
, 𝛽
𝑖

0
} (𝑖 = 1,⋯ , 20; 𝑗 = 1,⋯ , 4).

The values of the parameters to create each P 𝑖 are uniformly randomly taken from ranges of numbers

that work as sources. Such sources are shown in Table 5.1. Recall that 𝛽 𝑖
0
is the only real number of

the interval-based outranking model’s parameters, whereas the rest of parameters are defined as interval

numbers. Thus, the sources in rows 𝜆𝑖 , 𝑤 𝑖

𝑗
and 𝑣𝑖

𝑗
are actually used for each of these parameters’ bounds.

Of course, it is satisfied for the lower bounds of these parameters to be not greater than their respective

upper bounds. Particularly, we calculate the weight of criterion 𝑔𝑖 as 𝑤−

𝑖
= (1 − 𝜔𝑖)�̂� , 𝑤+

𝑖
= (1 + 𝜔𝑖)�̂� ,

where 𝜔𝑖 is randomly generated in [0,0.3] and �̂� = 1/4. In Table 5.1, the value 𝑣𝑗𝑚𝑎𝑥 is used to represent

the maximum impact in the 𝑗th criterion of a set of 2000 randomly created portfolios. Constraints (2.3.5)

and (2.3.6) settled by the interval-based outranking are also fulfilled in the creation of each P 𝑖 .

Table 5.1: Sources used to uniformly randomly assign values to the parameters of the interval-

based outranking

Parameter Source

𝛽
𝑖

0
(0.5,0.6)

𝜆
𝑖 (0.5,0.6)

𝑤
𝑖

𝑗
(0,1)

𝑣
𝑖

𝑗
(0.3,0.5)𝑣𝑗

𝑚𝑎𝑥
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5.3.2.2 A direct elicitation of the DM’s system of preferences

In order to address Problem (5.3.4), we use the interval-based outranking approach (Subsection 2.3.4) to

model the DM’s preferences and to build the aggregation described in Subsection 5.2. Since that approach

allows the DM to provide imprecise values for its parameters, it is relatively easy to obtain such values

directly from the DM. However, in general terms the elicitation of a preference model’s parameters com-

prises some part of arbitrariness, imprecision, and ill-determination [97]. According to Ref. [97], this

is particularly true when “the entity in charge of the decision is a group where its members disagree

concerning the parameter values, or when the decision-maker is a mythical or an inaccessible person”.

Consequently, in the experiments described below we assume that although the values of the interval-

based outranking’s parameters are directly elicited, there exists some deviation from the most appropriate

parameters’ values.

Therefore, we randomly deviate each parameter (bound in the case of the interval numbers) in the simu-

lated decision models between 0.1 and 0.3 to obtain 20 new sets P 𝑖′

= {𝑤
𝑖

𝑗

′

, 𝑣
𝑖

𝑗

′

, 𝜆
𝑖′

, 𝛽
𝑖

0

′

} (𝑖 = 1,⋯ , 20; 𝑗 =

1,⋯ , 4). These sets simulate the values directly elicited from the DMs and they are used as the actual

decision policies in the experiments below.

5.3.2.3 An indirect elicitation of the DM’s system of preferences

We present here an experimental design to assess, in the context of the Portfolio Optimization Problem

with many criteria, the proposal introduced in Chapter 4. We evaluate both the indirect elicitation method

and the genetic-algorithm-based system described there.

Given that this subsection performs an indirect elicitation, a creation of reference sets is now presented

(cf. Subsection 4.4.1).

Creating reference sets Each instance 𝑖 uses a reference set 𝑇 containing 20 portfolios assigned to

categories consistently with the corresponding decision maker’sP 𝑖 and constraints (4.2.1) to (4.2.6). Each

portfolio is assigned to one of three categories: 𝐶3 = 𝐺𝑜𝑜𝑑 , 𝐶2 = 𝐷𝑜𝑢𝑏𝑡 and 𝐶1 = 𝐵𝑎𝑑 . The assignments

of portfolios to categories are made guaranteeing (as much as possible) a uniform number of portfolios

among the categories. If a portfolio cannot be assigned to one of the categories consistently with P 𝑖 and

constraints (4.2.1) to (4.2.6), then the portfolio is discarded and a new one is generated. This procedure

continues until the cardinality of the reference set is satisfied.

Let us now describe the assignment technique. First, we generate a central profile for each category.

To generate the central profiles, we randomly create a sufficiently large set of dummy portfolios described

by the family of criteria in F = {𝑔1,⋯ , 𝑔4}. (Sets of 2000 portfolios are used in the experiments described
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below.) Then, these portfolios are ranked through the outranking net flow score using the corresponding

simulated parameter vector P 𝑖 . Finally, the central profile of a given category is defined as the portfolio

with the most representative position within the whole rank. For example, the central profile of category

𝐶1 is in the position ⌈2000/6⌉ if it fulfills constraints (4.2.1) to (4.2.6). If it does not fulfill the constraints,

the procedure looks for another portfolio with a close position. To assign the rest of actions within the

reference set to the categories, we follow the next procedure: i) randomly create a new action described

by its impact in the criteria; ii) determine if it can be assigned to a category (fulfilling constraints (4.2.1)

to (4.2.6)); iii) if it cannot be assigned to any category, go to step i; iv) if it can be assigned to just one

category, assign the solution to that category; v) if it can be assigned to more than one category, assign

the action to the central category (arbitrarily choosing when there is more than one).

For each instance 𝑖 and in each method of elicitation, it is plausible to assume that the DM has to be

satisfied with P 𝑖′. Thus, we assume that she/he requires i) the importance of the confidence intervals

to be greater than the importance assigned to the rest of criteria, since she/he is considered to be highly

risk-averse; and ii) the order of importance assigned to the criteria in P 𝑖 must be respected in P 𝑖′.

5.3.2.4 Portfolio optimization

For each instance 𝑖, we obtain the best compromise portfolio in the following way. First, the approxima-

tion to the returns’ probability distribution in the form of confidence intervals is obtained by Montecarlo

simulation; this simulation uses the stocks’ historical monthly returns of 36 periods as input and runs 200

statistical points using a pseudo-random numbers generator known as Mersenne Twister (see [198,199]).

Then, the evaluation of the financial indicators for the portfolio is obtained using Equations (5.3.2) and

(5.3.3). Once the portfolios’ fitness of a subset of candidate solutions has been achieved with respect to

Problem (5.3.4), each portfolio’s fitness is aggregated using the DM’s parameters, P 𝑖′, and the procedure

described in Subsection 5.2. Finally, the set of best compromise solutions to Problem (5.3.4) is composed

with the non-dominated solutions to the underlying Problem (5.2.1).

Since Problem (5.2.1) was raised as a lexicographic non-linear optimization problem, we use here Dif-

ferential Evolution to address it. Such meta-heuristic generally has good performance in non-linear single

objective optimizations (see e.g., [164,165]). Differential Evolution algorithm applied here uses 𝑝𝑠 = 100

individuals as its population size, its stopping criterion is the achievement of 𝑔𝑛 = 100 generations, and

it uses an 𝑛-dimensional real-valued vector to encode the individuals. Recall that Differential Evolution

requires the setting of four additional control parameters (cf. [175]): the crossover probability, 𝐶𝑅; the

mutation rate, 𝑝𝑚; the differential weight, 𝐹 ; and the distribution index, 𝜂. As done in Ref. [175], here we

set these parameters as 𝐶𝑅 = 1, 𝑝𝑚 = 1/𝑝𝑠, 𝐹 = 0.5, and 𝜂 = 20. Algorithm 4 presents the pseudo-code of

our algorithm.
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Algorithm 4 Algorithm proposed to select the most preferred portfolio
Require: DM’s preferences (described through the interval-based outranking method; that is,

P = {𝑤𝑗 , 𝑣𝑗 , 𝜆, 𝛽0}; 𝑖 = 1,⋯ , 20; 𝑗 = 1,⋯ , 4), Problem context (probability distributions of the

stock returns, fundamental indicators for each stock, technical indicators for each stock).

Ensure: Set of portfolios recommended by our approach as the best portfolios, 𝜌𝑏𝑒𝑠𝑡 .

1: 𝑖 ← 1

2: for 𝑖 ≤ 𝑝𝑠 do

3: 𝑔 ← 0

4: 𝑃𝑔 ← CreateInitialPopulation()

5: for 𝑔 ≤ 𝑔𝑛 do

6: 𝑗 ← 1

7: for 𝑗 ≤ 𝑝𝑠 do

8: 𝐻
𝑗

𝑔 ← CreateOffspring(𝑃𝑔 , selection, crossover, mutation)

9: 𝑃
𝑗

𝑔 ← SelectBestIndividual(𝑃 𝑗𝑔 , 𝐻 𝑗

𝑔)

10: 𝑗 ← 𝑗 + 1

11: end for

12: 𝑔 ← 𝑔 + 1

13: end for

14: 𝜌𝑖 ← SelectBestFromSet(𝑃𝑔)

15: 𝑖 ← 𝑖 + 1

16: end for

17: 𝑔 ← 0

18: 𝑃𝑔 ← {𝜌1, 𝜌2,⋯ , 𝜌𝑝𝑠}

19: for 𝑔 ≤ 𝑔𝑛 do

20: 𝑗 ← 1

21: for 𝑗 ≤ 𝑝𝑠 do

22: 𝐻
𝑗

𝑔 ← CreateOffspring(𝑃𝑔 , selection, crossover, mutation)

23: 𝑃
𝑗

𝑔 ← SelectBestIndividual(𝑃 𝑗𝑔 , 𝐻 𝑗

𝑔)

24: 𝑗 ← 𝑗 + 1

25: end for

26: 𝑔 ← 𝑔 + 1

27: end for

28: 𝜌𝑏𝑒𝑠𝑡 ← SelectBestFromSet(𝑃𝑔)
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Algorithm 4 first creates an initial population by randomly sampling from Ω. Always

that we create a feasible individual, we calculate its fitness in the sense of Problem (5.3.4).

That is, we estimate its confidence intervals around the individual’s return and its qual-

ity indexes according to the financial analyses. Then, for each generation 𝑗 and for each

individual 𝑃 𝑗
𝑔
of 𝑃𝑔 , the algorithm creates a feasible individual 𝐻 𝑗

𝑔
by applying the Se-

lection, Crossover and Mutation operators of Differential Evolution. After that, 𝑃 𝑗
𝑔
and

𝐻
𝑗

𝑔
are compared on the basis of Problem (5.2.1). The best individual is now 𝑃

𝑗

𝑔
. These

steps constitute one generation; we perform 𝑔𝑛 = 100 generations. After performing

this number of generations, we obtain the set of individuals 𝜌𝑖 (likely with cardinality

of one) within 𝑃𝑔 whose fitness is the best in the sense of Problem (5.2.1). All the previ-

ous is considered as the 𝑖th run. Several runs (up to 𝑝𝑠) are performed to obtain a “seed

population” of size 𝑝𝑠 whose individuals are the solutions found in the previous runs.

A final run is performed using the seed population as the initial population. The set of

best compromise solutions (likely with cardinality of one) to Problem (5.2.1) in this final

run is presented to the DM as the best portfolios.

The main difference between Algorithm 4 and other approaches is the exploitation

of the non-outranked truth degree, 𝑁𝑆𝑥 , to select the best portfolio(s) according to the

decision maker’s preferences. 𝑁𝑆𝑥 is used as the representative value that reflects the

overall satisfaction of 𝑥 with respect to a set of portfolios according to the decisionmaker

supplied preference information. Such preference information is in terms of the interval-

based outranking method; that is, we consider the weights assigned by the decision

maker to each criterion, his/her veto values and his/her thresholds about when a solution

is at least as good as another.

5.3.2.5 Dataset

We use the historical monthly returns of the stocks in the DJIA index for the period

April 2011-March 2016 to perform a back-testing strategy (cf. [220]); the evaluation of

our approach is in the period April 2014-March 2016 (3 years of data are used as the

training period for the statistical simulation of returns). That time span is recent, it
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has several upward, downward, and horizontal market’s movements, so it is interesting

to analyze it. We use here a sliding time window of 36 months/1 month, similarly to

Refs. [124,181,264] to perform the back-testing. That is, we use three years for training

the statistical model (e.g., we obtain metrics of the data set April 2011 to March 2014)

and one month for validation (we will use the metrics obtained to create a portfolio in

April 2014). The process is then repeated for each period of one month (in a sliding

window manner) until the end of the evaluation period. In other words, we select the

best stock portfolio of the current month by using the historical metrics of the previous

three years, addressing Problem (5.3.4), and maintaining the portfolio over a one-month

investment horizon. Each time we start a new investment horizon, we review the stock

portfolio (i.e., we select a new distribution of resources among the stocks) according to

the corresponding horizon’s valuation.

As done by many authors (e.g., [10,56,124,187,302]), the historical prices used to es-

timate the returns’ probability distribution and to calculate the technical indicators, as

well as the returns of the index are obtained from Ref. [289]. And, as done by other

works (e.g., [91,212]), the financial data to calculate the fundamental ratios is obtained

from Ref. [215]. All the data used, together with all the results obtained, are available

for consultation upon request.

5.3.3 Results

The experiments described above allow us to obtain

• The performance of our approach with respect to comparisons with benchmarks

in two contexts: the criteria space and the objective space. In the former, we make

a comparison in terms of the criteria considered in Problem (5.3.4) and estimate

the DM’s satisfaction by means of the outranking relation. In the latter, the com-

parison is in terms of the actual returns of the solutions and a more “practical”

point of view about our approach’s performance is provided.

• Our approach’s ability to reproduce the DM’s decisions depending on the model
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used to elicit the values of the preference parameters; thus, providing an idea of

which method should our approach’s practitioner implement.

5.3.3.1 Assessing the performance of our approach

Performance in the criteria space Here, we assess the performance of the portfolios

built by our approach using both the direct and indirect elicitation methods. We refer

to the former as Direct Elicitation Selective Pressure (𝐷𝑠𝑝) approach, and to the latter

as Indirect Elicitation Selective Pressure (𝐼𝑠𝑝) approach. In order to make a clearer ex-

position of the results obtained, we first show a comparison of the 𝐷𝑠𝑝 approach with

a benchmark and, after concluding an evident superiority of the former, we contrast its

results with the results obtained by the 𝐼𝑠𝑝 approach.

𝐷𝑠𝑝
𝐷𝑠𝑝𝐷𝑠𝑝 vs MOEA/D The benchmark used as reference to assess the 𝐷𝑠𝑝 approach is

MOEA/D, a state-of-the-art multiobjective evolutionary algorithm based on decomposi-

tion [175,295] (Subsection 2.4.2). The goal of such comparison is to provide a reference

to the capacity of the approach proposed in Subsection 5.2 to deal with many criteria

and obtain satisfactory solutions.

During the exploitation process of MOEA/D, the individuals are represented as real

vectors and three randomly selected individuals are used for the crossover operator. The

crossover operator works as follows. Let 𝑞𝐺1, 𝑞𝐺2, 𝑞𝐺3 be the quantity of genes satisfy-

ing 𝑥𝑖 > 0 in parent 1, parent 2 and parent 3, respectively. The idea is that the parents

provide similar proportions of genetic material to the offspring. So, the number of genes

satisfying 𝑥𝑖 > 0 in the child solution is up to 𝑞𝐺𝐶 =
𝑞𝐺1+𝑞𝐺2+𝑞𝐺3

3
and each parent gives

𝑞𝐺𝐶

3
randomly chosen genes to the offspring solution. Themutation operator simply con-

sists in swapping two randomly chosen genes of the offspring solution. The probability

of mutation is 𝑝𝑚 =
1

𝑝𝑠
, where 𝑝𝑠 is the population size. In preliminary experiments,

we found that discarding the infeasible solutions is the most suitable method to obtain

solutions with good performance. The Tchebycheff method (Equation (2.4.7)) is used

to aggregate the criteria (cf. [295] and Subsection 2.4.2). The dataset described in Sub-
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section 5.3.2.5 and the constraints defined in Problem (5.3.4) are used here to create the

benchmark portfolios.

Both 𝐷𝑠𝑝 and MOEA/D achieve good approximations to the Pareto front with respect

to each other, since they produce a high number of non-dominated solutions (cf. Subsec-

tion 2.3.4 to see the definition of interval-based dominance). From the approximations

achieved by the approaches in each of the 24 periods of the dataset and for each instance,

on average, roughly 0.7% of the solutions found by MOEA/D are dominated by at least

one of our solutions, and roughly 0.3% of our solutions are dominated by at least one of

the solutions from MOEA/D. Indicating that, if MOEA/D is achieving a good approxi-

mation to the true Pareto front of Problem (5.3.4), then our proposal is also obtaining a

good approximation.

It is now interesting to know how “good” the constructed portfolios are from the DM’s

perspective. Thus, we use the DMs’ actual systems of preferences, P 𝑖 (𝑖 = 1,⋯ , 20), (as

opposed to the one used by the 𝐷𝑠𝑝 approach, P 𝑖′, Subsection 5.3.2.4) to compare the

solutions built by both approaches. Given that each P 𝑖 already has all the parameters

needed by the interval-based outranking approach, the comparison of solutions is on

the basis of such method. Our intention is to find the proportion of times that the strict

outranking relation is met between the portfolios created by each approach. Just to

provide an example, Table 5.2 shows a portfolio (arbitrarily chosen) from MOEA/D’s

approximation to the Pareto front and a portfolio built by the 𝐷𝑠𝑝 approach for one (also

arbitrarily chosen) DM in the April 2014 period. As it was specified above, the unit used

in Table 5.2 is the proportion ofmoney to invest in each of the 𝑛 investment objects. Table

5.3 shows their respective impact on criteria of Problem (5.3.4), and Table 5.4 shows the

chosen DM’s system of preferences.

Table 5.2: Arbitrarily chosen portfolios built in the period April 2014 using MOEA/D and our

approach using a direct elicitation of the DM’s system of preferences, 𝐷𝑠𝑝

Stock MOEA/D 𝐷𝑠𝑝

American Express Company (AXP) 0 0

Boeing Co. (BA) 0 0

Continued on next page
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Table 5.2 – Continued from previous page

Stock MOEA/D 𝐷𝑠𝑝

Caterpillar Inc. (CAT) 0 0

Cisco Systems, Inc. (CSCO) 0 0

Chevron Corporation (CVX) 0 0

EI du Pont de Nemours and Co (DWDP) 0 0

Walt Disney Company (DIS) 0 0

General Electric Company (GE) 0 0

Goldman Sachs Group Inc. (GS) 0 0

Home Depot, Inc. (HD) 0.08 0

International Business Machines Corporation (IBM) 0 0.256

Intel Corporation (INTC) 0.34 0.03

Johnson and Johnson (JNJ) 0 0

JPMorgan Chase and Co. (JPM) 0 0

Coca-Cola Company (KO) 0.24 0

McDonald’s Corporation (MCD) 0.03 0.349

3M Co. (MMM) 0 0

Merck and Co., Inc. (MRK) 0.30 0

Microsoft Corporation (MSFT) 0 0

Nike Inc. (NKE) 0 0

Pfizer Inc. (PFE) 0 0

Procter and Gamble Co. (PG) 0 0

ATandT Inc. (T) 0 0.365

Travelers Companies Inc. (TRV) 0 0

UnitedHealth Group Inc. (UNH) 0 0

United Technologies Corporation (UTX) 0 0

Visa Inc. (V) 0 0

Verizon Communications Inc. (VZ) 0 0

Wal-Mart Stores Inc. (WMT) 0 0

Exxon Mobil Corporation (XOM) 0 0
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Table 5.3: Evaluation in the criteria space of the portfolios built by the approaches

Criterion MOEA/D 𝐷𝑠𝑝

70 percent confidence interval [-0.0108, 0.0293] [-0.0046, 0.0270]

99 percent confidence interval [-0.0372,0.0469] [-0.1747, 0.0452]

Fundamental analysis’ quality index [0.3537,0.3538] [0.8268,0.8269]

Technical analysis’ quality index [0.3414,0.3415] [0.2244,0.2245]

Table 5.4: System of preferences of the arbitrarily chosen DM

𝛽0 𝑤1 𝑤2 𝑤3 𝑤4

0.55 [0.18,0.24] [0.56,0.78] [0.05,0.07] [0.05,0.06]

𝜆 𝑣1 𝑣2 𝑣3 𝑣4

[0.51,0.56] [0.03,0.04] [0.10,0.12] [0.27,0.32] [0.10,0.13]

Now, let 𝑦 and 𝑥 be the portfolios shown in Table 5.2, which were built usingMOEA/D

and𝐷𝑠𝑝 , respectively. According to the interval-based outrankingmethod, the likelihood

indexes that the DM (in Table 5.4) assigned to these portfolios are shown in Table 5.5.

From this table we can deduce that, although there is no dominance between the portfo-

lios, the DM is more satisfied with the portfolio created by the proposed approach than

with the benchmark portfolio.

Table 5.5: Evaluation of the outranking relation between the solutions shown in Table 5.2. 𝑦:

portfolio created by MOEA/D, 𝑥 : portfolio created by the proposed approach

Comparison Value Outranks

𝛽(𝑥, 𝑦) 0.56 Yes

𝛽(𝑦, 𝑥) 0.0 No

We now perform the same analysis for every simulated DM and for every period in

the dataset to have an idea of how satisfied the DM would be on average with the so-

lutions provided by the proposed approach relative to the benchmark. The results are

presented in Table 5.6. This table presents the proportion of times that the solutions

of the proposed approach were better than the benchmark’s solutions according to the
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DM’s actual system of preferences, P 𝑖 , for the 20 simulated DMs, and for the 24 peri-

ods of the dataset. In each period, the solution created by our proposal for each DM is

compared to each solution in the Pareto front approximated by MOEA/D. In this table,

𝑥 represents the solutions provided by 𝐷𝑠𝑝 and 𝑦 represents the solutions provided by

MOEA/D. It is important to highlight that the actual simulated decision makers’ systems

of preferences are used in this assessment, as opposed to the directly elicited systems of

preferences, which are the ones that the 𝐷𝑠𝑝 approach uses in its optimization proce-

dure. The idea here is to assume that the actual investor has two possibilities: choosing

one portfolio from the MOEA/D’s approximation to the Pareto front, or choosing the

portfolio built by the 𝐷𝑠𝑝 approach. What Table 5.6 shows is the average satisfaction (in

terms of the interval-based outranking method) that the investor would have received

if he/she would have chosen any option.

Table 5.6: Comparing the solutions 𝑥 provided by the proposed approach and the solutions 𝑦

provided by MOEA/D

Proportion of times that 𝑥𝑆𝑦 is met Proportion of times that 𝑦𝑆𝑥 is met

0.1242 0.0904

The paired Wilcoxon test performed indicated that the difference of these means is

considered to be statistically significant.

From Table 5.6 we can state that the proposed approach was able to findmore satisfac-

tory solutions than the benchmark algorithm when using a direct elicitation of the DM’s

system of preferences. Of course, this comparison is on the basis of the criteria contem-

plated in Problem (5.3.4). However, we can expect similar results of comparisons on the

basis of alternative criteria and defer the validation of such hypothesis for future work.

Finally, it is important to note here that the criteria contemplated in Problem (5.3.4) can

be easily adjusted to the DM’s specific requirements.

𝐼𝑠𝑝𝐼𝑠𝑝𝐼𝑠𝑝 vs 𝐷𝑠𝑝
𝐷𝑠𝑝𝐷𝑠𝑝 This subsection shows the comparison in performances of the portfolios

created by our approach using both a direct elicitation of the DM’s system of preferences,

𝐷𝑠𝑝 , and an indirect elicitation of such preferences, 𝐼𝑠𝑝 . The goal of the comparison is to
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define how “satisfied” the DMwould be when applying the indirect elicitation procedure

described in Chapter 4 and using the experimental design of Subsection 5.3.2.3 with re-

spect to the direct elicitation described in Subsection 5.3.2.2. Thus, we calculate the

proportion of times that one approach’s solutions are preferred to the other approach’s

solutions. As stated in Sections 5.3.2.1 and 5.3.2.5, 20 instances are created in each exper-

imental period and 24 periods are considered in the whole experimentation; thus, 480

experimental points are used to perform the comparison. Given that both approaches use

the interval-based outranking method to represent the DM’s preferences, this method is

used to evaluate the DM’s satisfaction. We use the actual system of preferences of the

DM simulated in the 𝑖th instance, P 𝑖 , to compare the solutions for 𝑖 = 1,⋯ , 20.

As an example of the comparison, Table 5.7 shows the values in P4 and the corre-

sponding values found by the elicitation procedures for the April 2014 period, Table 5.8

presents the portfolios created by the approaches for the elicited parameters, and Table

5.9 provides the fitness values of these portfolios in the sense of Problem (5.3.4).

Table 5.7: Decision policies of the simulated DM and parameter values found by the elicitation

procedures in the April 2014 period

Decision policy 𝛽0 𝜆 𝑤1 𝑤2 𝑤3

Simulated DM 0.54 [0.52,0.57] [0.57,0.84] [0.31,0.38] [0.00,0.06]

Direct elicitation 0.51 [0.65,0.66] [0.50,1.00] [0.25,0.46] [0.00,0.04]

Indirect elicitation 0.51 [0.56,0.62] [0.62,0.85] [0.10,0.80] [0.07,0.31]

Decision policy 𝑤4 𝑣1 𝑣2 𝑣3 𝑣4

Simulated DM [0.02,0.12] [0.04,0.05] [0.09,0.10] [0.33,0.42] [0.11,0.13]

Direct elicitation [0.02,0.10] [0.03,0.04] [0.08,0.11] [0.26,0.47] [0.09,0.09]

Indirect elicitation [0.07,0.57] [0.03,0.04] [0.08,0.10] [0.39,0.53] [0.12,0.16]

Table 5.8: Portfolios built in the April 2014 period using the decision policies of Table 5.7

Stock 𝐷𝑠𝑝 𝐼𝑠𝑝

American Express Company (AXP) 0 0

Boeing Co. (BA) 0 0.018

Continued on next page
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Table 5.8 – Continued from previous page

Stock 𝐷𝑠𝑝 𝐼𝑠𝑝

Caterpillar Inc. (CAT) 0 0

Cisco Systems, Inc. (CSCO) 0 0

Chevron Corporation (CVX) 0 0

EI du Pont de Nemours and Co (DWDP) 0.003 0

Walt Disney Company (DIS) 0 0

General Electric Company (GE) 0 0

Goldman Sachs Group Inc. (GS) 0 0

Home Depot, Inc. (HD) 0.05 0

International Business Machines Corporation (IBM) 0.28 0.347

Intel Corporation (INTC) 0 0

Johnson and Johnson (JNJ) 0.007 0

JPMorgan Chase and Co. (JPM) 0 0

Coca-Cola Company (KO) 0 0

McDonald’s Corporation (MCD) 0.315 0.376

3M Co. (MMM) 0 0

Merck and Co., Inc. (MRK) 0 0

Microsoft Corporation (MSFT) 0 0

Nike Inc. (NKE) 0 0

Pfizer Inc. (PFE) 0 0.036

Procter and Gamble Co. (PG) 0 0

ATandT Inc. (T) 0.345 0.17

Travelers Companies Inc. (TRV) 0 0

UnitedHealth Group Inc. (UNH) 0 0

United Technologies Corporation (UTX) 0 0

Visa Inc. (V) 0 0.053

Verizon Communications Inc. (VZ) 0 0

Wal-Mart Stores Inc. (WMT) 0 0

Exxon Mobil Corporation (XOM) 0 0
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Table 5.9: Fitness of the portfolios built by the approaches in Problem (5.3.4)

Criterion 𝐷𝑠𝑝 𝐼𝑠𝑝

70 percent confidence interval [-0.0131, 0.0247] [-0.0087, 0.0270]

99 percent confidence interval [-0.0417, 0.0414] [-0.0449, 0.0452]

Fundamental analysis’ quality index [0.3719,0.3720] [0.3760,0.3761]

Technical analysis’ quality index [0.3533,0.3534] [0.3393,0.3394]

Now, let 𝑦 and 𝑥 be the portfolios shown in Table 5.8, which were built using the 𝐷𝑠𝑝

and 𝐼𝑠𝑝 , respectively. According to the interval-based outranking method described in

Subsection 2.3.4, the likelihood indexes that the DM whose preferences are P4 (shown

in Table 5.7) assigns to these portfolios are shown in Table 5.10.

Table 5.10: Evaluation of the outranking relation between the solutions shown in Table 5.8. 𝑦:

portfolio created using a direct elicitation, 𝑥 : portfolio created using an indirect elicitation

likelihood index of 𝑥𝑆𝑦 Value Strict preference

𝛽(𝑥, 𝑦) 0.55 Yes

𝛽(𝑦, 𝑥) 0.45 No

Of course, there is not dominance between the portfolios but, according to Table 5.10,

the solution found by the 𝐼𝑠𝑝 approach is strictly preferred to the𝐷𝑠𝑝 approach’s solution.

Applying the same analysis to the 480 points of comparison, we obtained that at least

one of the portfolios found by the 𝐼𝑠𝑝 approach is strictly-preferred to 10% of the port-

folios found by the 𝐷𝑠𝑝 approach, while at least one of the portfolios of the latter is

strictly-preferred to 5% of the portfolios found by the former. When performing Stu-

dent’s t-test on difference of means with the null hypothesis that these proportions are

the same, the two-tailed P value equals 0.0032. Hence, indicating that the difference is

statistically significant with a 99% confidence level. This allows us to conclude that the

indirect elicitation based on the preference disaggregation analysis proposed in Chapter

4 produced solutions that better satisfies the DM’s preferences in the context of Problem

(5.3.4) with respect to the direct elicitation procedure described in Subsection 5.3.2.2.

Furthermore, these results together with the ones shown in Table 5.6, do not allow to re-
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ject hypothesisH.1 of this document, which is “the proposed approach builds portfolios

that are more preferred by the decision maker than the reference portfolios”.

Performance in the objective space Now, we contrast the actual returns of the port-

folios constructed by the proposed approach with those of three benchmarks: the Dow

Jones Industrial Average (DJIA) index, the Mean-Variance approach [195], and the port-

folios built using MOEA/D [295]. The problem addressed by the optimization methods

(i.e., theMean-Variance approach, MOEA/D and the approach proposed here) is provided

in (5.3.4). The results are presented in Figure 5.1. This figure shows the accumulative

monthly returns of the portfolios in the 24 periods span between April 2014 and March

2016. In the case of the Mean-Variance approach and MOEA/D, the accumulative return

shown in Figure 5.1 corresponds to the average returns of the portfolios in their specific

Pareto front. For the accumulative return of the DJIA index, we used the monthly re-

turns published in Ref. [289]. In the case of our approach, the accumulative return is

formed with the average returns of the portfolios obtained for the 20 DMs using first

a direct elicitation procedure, 𝐷𝑠𝑝 (Subsection 5.3.2.2), and using later the indirect elic-

itation procedure of Chapter 4, 𝐼𝑠𝑝 (Subsection 5.3.2.3). Clearly, the proposed approach

outperforms both the Mean-Variance approach and the DJIA index in these experiments

no matter the elicitation procedure implemented.

Figure 5.1: Actual accumulative returns of the benchmark portfolios and the portfolios built by

the proposed approach.
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In other comparison, we can see similar average performances between MOEA/D and

the proposed approach. Such similarity is originated in both approaches using the same

criteria. However, the proposed approach generated the best accumulative return in the

whole-time span; this indicates that the results with incorporation of DM’s preferences

have been, on average, more effective than the optimization without including prefer-

ences. It would be interesting to determine the DM’s decision policies that generate the

best returns. For example, a preliminary analysis suggests that when the simulated DMs

fulfill a specific pattern in their systems of preferences the returns tend to grow. Some

characteristics of the systems of preferences with such pattern are i) a greater impor-

tance assigned to the confidence intervals than to the financial indicators; ii) a greater

importance assigned to the interval with the lower probability of containing the actual

return; iii) a greater importance assigned to the fundamental analysis’ quality index than

to the technical analysis’ one; and iv) higher relative values for the vetoes assigned to

the financial indicators. Given that the main goal of this Section is to provide an illus-

trative example of the proposed methodology (Subsection 5.2), we defer the analysis of

the previous and similar assertions for future work.

In the context of the comparison of MOEA/D with our approach for a given period of

time, it is important to highlight that the performance of the first is the average return

of the portfolios in its Pareto front approximation. Thus, the performance of MOEA/D

shown in Figure 5.1 could be seen as the average performance of several attitudes facing

risk, while the performance of our approach is the only portfolio representing a highly

risk-averse investor. It is plausible to assume that if the market presents an uptrend (as

slightly seen in the considered time span) then the return of the solutions created by

MOEA/D should be, on average, better to the solution of our approach.

Finally, the proposed approach has good behavior in the presence of losses, specifically

in the periods of August and September 2015 where the steepest fall of the market oc-

curred. This indicates us a satisfactory protection against risk. Moreover, the approach

is taking evident advantage of the market upturns, what indicates that it is also capable

of finding uptrend opportunities.
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5.3.3.2 Assessing the satisfaction of the decision maker

Here, we evaluate our approach in its ability to define a set of preference parameters

through which

i. it is possible to establish the same preference relations as the ones inferred from the

assignments made by the simulated DMs (see Assumptions (4.2.1) to (4.2.6)); and

ii. it is possible to suggest the same assignments as the ones made by the simulated

DMs when creating the reference sets (cf. Subsection 5.3.2.3).

Using preference relations as a benchmark In order to test the proposed approach’s

effectiveness to reproduce the same binary preference relations as the simulated DMs,

we use Equation (4.4.9), which is a measure based on the proportion of times that the

preference relations coincide. We use the DM’s actual decision model in each of the

20 instances for each of the 24 experimental periods to create a new set of decisions,

𝜒 . In this new set, the DM assigns 100 new portfolios to three categories, 𝐶3 = 𝐺𝑜𝑜𝑑 ,

𝐶2 = 𝐷𝑜𝑢𝑏𝑡 and 𝐶1 = 𝐵𝑎𝑑 . The effectiveness of the proposed approach to reproduce

the preference relations inferred from this classification is defined for each instance and

each experimental period as (cf. Subsection 4.4.2):

1 −

𝜉

𝜂

.

Where

𝜂 =
𝑇𝑁

2
(𝑇𝑁 − 1),

𝑇𝑁 = |𝜒 | = 100,

𝜉 = ∑

(𝑥,𝑦)∈𝜒×𝜒

[𝜉𝑃 (𝑥, 𝑦) + 𝜉𝑄(𝑥, 𝑦) + 𝜉𝐾 (𝑥, 𝑦) + 𝜉𝐼 (𝑥, 𝑦) + 𝜉𝑅(𝑥, 𝑦)],

𝜉𝑃 (𝑥, 𝑦) = 1 if 𝑥𝑃P′𝑦 ⇒ 𝐶𝑃 (𝑥) > 𝐶𝑃 (𝑦) is false and 0 otherwise,

𝜉𝑄(𝑥, 𝑦) = 1 if 𝑥𝑄P′𝑦 ⇒ 𝐶𝑃 (𝑥) ≥ 𝐶𝑃 (𝑦) is false and 0 otherwise,

𝜉𝐾 (𝑥, 𝑦) = 1 if 𝑥𝐾P′𝑦 ⇒ 𝐶𝑃 (𝑥) ≥ 𝐶𝑃 (𝑦) is false and 0 otherwise,
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𝜉𝐼 (𝑥, 𝑦) = 1 if 𝑥𝐼P′𝑦 ⇒ 𝐶𝑃 (𝑥) = 𝐶𝑃 (𝑦) is false and 0 otherwise, and

𝜉𝑅(𝑥, 𝑦) = 1 if 𝑥𝑂𝑦; 𝑂 indicates that the relation between 𝑥 and 𝑦 is other than the

ones defined in Subsection 2.3.4.

Using this measure, the effectiveness of our approach using the direct elicitation de-

scribed in 5.3.2.2 in the 480 experimental points is 84%. While the average effectiveness

of our approach using the indirect elicitation proposed in Chapter 4 is 96%. The dif-

ference is statistically significant according to student’s t test. Indicating that the latter

approach was able to better reproduce the DM’s preferences in the context of binary

preference relations.

Using ordinal classification as a benchmark Now, the solutions found by our ap-

proach implementing both the direct and indirect elicitation are used to assign portfolios

in preferentially ordered categories. So, the quality of the solutions is revised by con-

trasting the assignments made by our approach and by the actual simulated DMs. The

comparison is based on the new sets of decisions defined in the previous subsection.

All the assignments are performed as described in Subsection 5.3.2.3. Our approach’s

effectiveness is defined as the proportion of portfolios that were assigned to the same

category as the DMs’ assignments in the 480 experimental points.

The effectiveness in the context of ordinal classification for our approach using a di-

rect elicitation is 70%; whereas its effectiveness using indirect elicitation is 80%. This

difference is statistically significant according to student’s t test. Indicating that the in-

direct elicitation procedure proposed in Chapter 4 is more effective in reproducing the

DM’s assignments.



Chapter 6

Conclusions and future work

In this doctoral thesis, we discussed the Portfolio Optimization Problem and how the

preferences of the investor as well as his/her attitude facing risk should be incorporated

during the search of the best portfolio. This is a crucial stage in the broader topic of

Portfolio Selection, a highly important financial activity in today’s world economy. Such

topic is so important that, for example, the stock Portfolio Selection is considered by

some authors as “crucial to the existence of capitalism and private property” [241].

We highlighted in this work the importance of considering the case where the in-

vestor’s preferences are ambiguous, vague, ill-determined or imprecise. Thus, our ob-

jective was to propose and validate an approach that addresses the Portfolio Optimiza-

tion Problem finding solutions that are most preferred by the investor in presence of

imperfect knowledge.

Focusing on the most relevant characteristics that preference and Portfolio Selection

models must fulfill according to the related literature, we assumed that the approach

needed to be able to: i) manage risk in the objectives whose impacts cannot be exactly

known in such a way as to incorporate the decision maker’s attitude when facing this

risk, ii) model the decision maker’s preferences so his/her holistic decisions can be re-

produced, and iii) deal with many criteria. Let us now address these lines of thought in

form of the thesis’ research questions.

129
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How to manage risk in the objectives whose impacts generated by the port-

folios cannot be exactly known, in such a way as to incorporate the decision

maker’s attitude during Portfolio Optimization? We described in Chapter 3 our

idea to use confidence intervals as underlying criteria to risky objectives. With the pur-

pose of assessing this idea, we showed an illustrative example where the most common

risky objective in literature was considered, maximization of the portfolio return. To

select portfolios on the basis of confidence intervals, the optimization procedure was

performed using the so-called Interval Analysis Theory (Section 2.2). Accordingly, we

enhanced in Section 3.3 a widely accepted multiobjective evolutionary algorithm based

on decomposition, MOEA/D, to deal with objective functions defined as interval num-

bers. Furthermore, we implemented some improvements to increase the diversity of

solutions provided by the evolutionary algorithm.

An extensive validation of the proposal was performed, where out-of-sample histor-

ical data from the stocks in the Dow Jones Industrial Average index (Subsection 2.1.4.3)

was used to perform a back-testing strategy. The proposal was compared in 156 scenar-

ios against the index, the classical and risk aversion formulations of the Mean-Variance

optimization (Subsection 2.1.1), and a recently published work [124]. We used two confi-

dence intervals in the optimization process as criteria to represent the investor’s behav-

ior facing risk. And two different behaviors were simulated. First, a highly risk-averse

investor, and later a lowly risk-averse investor. The optimization problem for assessing

the proposal in this illustrative example was formalized in Section 3.2.

The results shown in Figures 3.3-3.10 allowed us to conclude that the proposal was

effective in the construction of portfolios when the objective is maximization of return.

Our proposal outperformed all the benchmarks in most of the 156 scenarios, giving a

considerably better accumulated return after an optimization with 13 years of historical

data. These results are strong out-of-sample evidence that confidence intervals provide

useful characterizations of the portfolios’ returns and their involved risk. Furthermore,

we confirm with these results that an active management can in fact be achieved and

that greater advances should be sought in this stream of thought.
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Comparable with the importance of the previous results, the analysis performed in

Subsection 3.4.4 allowed us to see that the proposal presented robustness in the more

critical period of the last years, specifically March 2008-February 2009. This is a crucial

result in the experiments because the behaviors of the investors modeled are risk-averse.

Our results confirm that i) our proposal was adept to find portfolios by explicitly con-

sidering the DM’s attitude facing risk, being conservative when the DM’s behavior was

highly risk averse and taking good advantage of the uptrends when the behavior was

lowly risk averse; and ii) confidence intervals were a useful risk measure in the 2008

crisis, since they helped to reduce losses in the period.

How tomodel the decisionmaker’s preferences in such a way that the proposed

approach can reproduce his/her holistic decisions? In Chapter 4 we considered

that the values of the parameters in the decision maker’s system of preferences are im-

perfectly known. Furthermore, we assumed that imperfect knowledge about such pref-

erences can be encompassed as interval numbers. Thus, we proposed a Preference Dis-

aggregation Analysis method based on Interval Theory model to indirectly elicit the

decision maker’s preference parameters. We extensively assessed the proposed model

in several reference sets of assignments made by simulated decision makers. The ex-

periments were based on two ways to measure the indirect elicitation’s effectiveness:

comparing coincidences of binary preference relations and coincidences of assignments

to ordered categories.

The results shown in Tables 4.3, 4.6, 4.7 and 4.8 support that the effectiveness of our

proposal is high -in most cases superior to 99%- when the portfolios are described by

six and twelve criteria. This effectiveness is measured as the average proportion of co-

incidences of the binary preference relation inferred from the assignments made by the

simulated DM and the one inferred from the elicited decision model, for 40 instances.

On the other hand, Table 4.9 shows that when we obtain the average number of coin-

cidences between the assignments made by the simulated DM and the ones suggested

by the elicited decision model, for 40 instances, the effectiveness of the method is also

appreciably high. We found that, generally, the effectiveness of the proposed approach
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is greater as the cardinality of the set of reference DM’s decisions increases.

How to select the portfolios that aremore preferred by the decisionmakerwhen

many criteria are considered? We presented in Chapter 5 our approach to select the

most preferred portfolio managing uncertainty and incorporating the decision maker’s

preferences. Such approach allows the investor to specify as many criteria as she/he

requires by aggregating all the criteria, through Fuzzy Logic and the investor’s pref-

erences, in a bi-criterion optimization problem. Addressing this underlying problem

instead of the original one allows the approach to perform a guided search towards the

most preferred solutions within the Pareto front, thus reducing the investor’s difficulty

to select the final portfolio. Finally, the uncertainty involved in the investor’s prefer-

ences as well as in the actual return of the portfolio are both encompassed as ranges of

numbers through the so-called Interval Theory.

An illustrative use case was provided in the context of the stock Portfolio Optimiza-

tion Problem. The proposed approach was assessed considering i) the investor’s own

system of preferences, and ii) the actual returns of the portfolios provided. A compar-

ison with some well-known benchmarks, the Dow Jones Industrial Average index, the

Mean-Variance method, and an approach based on MOEA/D, was performed. We con-

clude from Tables 5.5 and 5.6 that, for the illustrative example, the proposed approach

was able to deal with many criteria and, at the same time, find solutions that satisfy the

investor’s preferences better than the solutions provided by the corresponding bench-

mark. From Figure 5.1, we conclude that the proposed approach was able to outperform

the benchmarks in the objective space; that is, it found portfolios with greater actual

returns. It can also be seen from this figure that our proposal suffered less aggressive

falls than the benchmarks (showing good management of the involved risk) and that it

had better exploitation of the rises (showing a good identification of opportunities).

The above remarks indicate us that the proposed approach i) allows the DM to deal

with as many criteria as she/he considers necessary to satisfy her/his requirements of

information (of course, themethod allows the hypothesis used in the illustrative example

to be specifically suited to the actual DM’s necessities); and ii) uses appropriate elements
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to construct portfolios that maximize the impact on both the underlying criteria and the

final objective in risky and non-risky environments.

We also assessed our approach with respect to the method used to elicit the decision

maker’s system of preferences. Particularly, we compared the performance of the ap-

proach when using the direct elicitation procedure described in Subsection 5.3.2.2 with

the indirect elicitation procedure implementing the interval-based preference disaggre-

gation analysis proposed in Chapter 4. It is important to note that, differently to the

experiments performed in Section 4.4, the experiments performed in Section 5.3.2 and

referenced below were implemented using real data from the DJIA index. We evalu-

ated and contrasted the out-of-sample effectiveness of our approach in both scenarios

and conclude that its performance is significantly better using the indirect elicitation

proposed in Chapter 4 for all scenarios. These scenarios are related to i) the decision

maker’s satisfaction, ii) the approach’s ability to reproduce the decision maker’s deci-

sions in the context of binary preference relations, and iii) the approach’s ability to re-

produce the decisionmaker’s decisions in the context of ordinal classification. Hence, we

have found evidence that support the hypothesis exposed by Mousseau and Slowinski

in Ref. [216] about the superiority of indirect elicitation procedures. Finally, the statisti-

cal results presented in Section 5.3.3.1 (particularly those obtained from Tables 5.10 and

5.6) do not allow to reject the hypothesis that “the proposed approach builds portfolios

that are more preferred by the decision maker than the reference portfolios”. Therefore,

indicating that the proposals presented in this paper can be of great help to real-world

investors and, by helping real-world investors, the proposals of this thesis can provide

relevant impacts and advances of the global economy.

We emphasize that although the main proposal was applied in the context of resource

allocation, there is a wide range of problems where the proposal can be applied. The

general characteristics of such problems are: i) requirement of the preferences of a deci-

sion maker to make the final decision, ii) consideration of many criteria, iii) uncertainty

in the preferences of the decision maker and/or the impact of the solution alternatives

on the criteria.
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Future work When considering the results of our proposal to manage risk, we saw

that more actual portfolio returns than expected fell outside their respective confidence

intervals, thus reducing the performance of the approach. This effect might be mitigated

when confidence intervals are around alternative estimators other than the expected

return, or when a more precise analysis of the probability within the intervals is made.

Thus, a validation of the approach using different types of estimators of return, their

combination and a method to scrutinize the probability within the intervals is deferred

as future work.

One future interesting research line is to assess new ways to generate the reference

sets; for example using alternative sorting methods, different cardinalities of the refer-

ence sets and the criteria sets, and/or diverse number of categories. Another research line

consists in modifying Assumption 5 in Section 4.2 (specifically Equations (4.2.1)-(4.2.6))

to introduce new preference relations and/or increase the granularity of the system of

relations.

Other future lines of work are i) the analysis of the specific characteristics of the in-

vestor’s system of preferences that allow to obtain greater returns; ii) the assessment of

the proposed approach in different contexts with respect to the number and/or kind of

criteria, the nature of investment objects within the portfolios, and the number of ele-

ments in the investment objects universe; iii) the consideration of specific useful char-

acteristics of the portfolio problem, such as multiple period optimization and a higher

number of constraints; iv) a more elaborated model using fuzzy logic to handle partial

truth, specially in Equations (5.3.2) and (5.3.3); v) to perform an interactive procedure

where the DM gets to know the shape of the Pareto front’s geometrical characteristics.
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Appendix A

Comparing the built preferences and

the actual DM’s system of preferences

Table A.1: Comparison of the cutting level 𝛽0 of the simulated DM and the one found by the

method in 𝜒30

Instance
𝛽0

DM PDA

1 0.515 0.529

2 0.541 0.547

3 0.516 0.576

4 0.549 0.56

5 0.541 0.547

6 0.544 0.682

7 0.549 0.562

8 0.513 0.518

9 0.536 0.555

10 0.519 0.526

xxxi
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Table A.2: Comparison of the cutting level 𝜆 of the simulated DM and the one found by the

method in 𝜒30

Instance
𝜆

DM PDA

1 [0.529,0.541] [0.559,0.67]

2 [0.512,0.523] [0.56,0.667]

3 [0.522,0.54] [0.567,0.67]

4 [0.515,0.523] [0.561,0.668]

5 [0.52,0.527] [0.553,0.659]

6 [0.521,0.534] [0.557,0.666]

7 [0.516,0.529] [0.557,0.661]

8 [0.522,0.536] [0.561,0.666]

9 [0.529,0.541] [0.571,0.676]

10 [0.518,0.54] [0.566,0.641]
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Table A.3: Comparison of the vector of weights of the simulated DM and the one found by the

method in 𝜒30

Instance Decision policy 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

1 DM [0.102,0.231] [0.125,0.208] [0.104,0.23] [0.131,0.202] [0.103,0.231] [0.117,0.216]

PDA [0.115,0.218] [0.118,0.215] [0.114,0.219] [0.117,0.216] [0.117,0.216] [0.119,0.215]

2 DM [0.086,0.247] [0.11,0.224] [0.118,0.215] [0.112,0.221] [0.098,0.236] [0.127,0.207]

PDA [0.122,0.212] [0.116,0.217] [0.116,0.217] [0.118,0.215] [0.121,0.212] [0.112,0.221]

3 DM [0.133,0.201] [0.115,0.219] [0.11,0.223] [0.14,0.193] [0.144,0.189] [0.091,0.242]

PDA [0.118,0.215] [0.118,0.215] [0.116,0.218] [0.115,0.219] [0.118,0.215] [0.115,0.218]

4 DM [0.093,0.241] [0.126,0.207] [0.135,0.198] [0.112,0.221] [0.098,0.235] [0.12,0.213]

PDA [0.118,0.215] [0.118,0.215] [0.112,0.221] [0.118,0.215] [0.124,0.21] [0.114,0.219]

5 DM [0.114,0.219] [0.088,0.245] [0.133,0.2] [0.119,0.214] [0.11,0.223] [0.136,0.197]

PDA [0.12,0.214] [0.119,0.215] [0.113,0.22] [0.115,0.218] [0.117,0.217] [0.119,0.214]

6 DM [0.091,0.242] [0.144,0.19] [0.121,0.212] [0.116,0.217] [0.149,0.184] [0.131,0.202]

PDA [0.117,0.216] [0.114,0.219] [0.115,0.219] [0.117,0.216] [0.116,0.217] [0.116,0.217]

7 DM [0.106,0.227] [0.135,0.198] [0.107,0.226] [0.119,0.215] [0.137,0.197] [0.092,0.242]

PDA [0.115,0.218] [0.116,0.217] [0.117,0.217] [0.12,0.214] [0.119,0.214] [0.114,0.219]

8 DM [0.129,0.204] [0.095,0.239] [0.104,0.229] [0.122,0.211] [0.091,0.242] [0.084,0.25]

PDA [0.121,0.212] [0.119,0.214] [0.116,0.217] [0.119,0.215] [0.112,0.221] [0.117,0.217]

9 DM [0.112,0.221] [0.103,0.23] [0.116,0.217] [0.107,0.227] [0.12,0.213] [0.131,0.202]

PDA [0.115,0.218] [0.118,0.216] [0.119,0.214] [0.12,0.213] [0.12,0.213] [0.118,0.215]

10 DM [0.138,0.196] [0.125,0.209] [0.095,0.238] [0.122,0.211] [0.123,0.21] [0.101,0.232]

PDA [0.118,0.216] [0.117,0.216] [0.115,0.218] [0.12,0.213] [0.113,0.221] [0.118,0.216]
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Table A.4: Comparison of the vector of vetoes of the simulated DM and the one found by the

method in 𝜒30

Instance Decision policy 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

1 DM [0.652,0.807] [0.663,0.842] [0.657,0.82] [0.604,0.703] [0.753,0.871] [0.757,0.864]

PDA [0.663,0.795] [0.635,0.745] [0.733,0.904] [0.719,0.863] [0.733,0.902] [0.733,0.915]

2 DM [0.612,0.697] [0.616,0.786] [0.64,0.747] [0.698,0.812] [0.746,0.895] [0.755,0.835]

PDA [0.665,0.797] [0.718,0.875] [0.651,0.78] [0.703,0.849] [0.629,0.74] [0.735,0.9]

3 DM [0.685,0.82] [0.686,0.793] [0.699,0.875] [0.649,0.838] [0.635,0.762] [0.616,0.761]

PDA [0.736,0.911] [0.676,0.807] [0.677,0.807] [0.682,0.816] [0.629,0.746] [0.653,0.788]

4 DM [0.663,0.841] [0.678,0.783] [0.706,0.821] [0.701,0.9] [0.715,0.873] [0.732,0.873]

PDA [0.7,0.849] [0.713,0.854] [0.697,0.836] [0.714,0.873] [0.698,0.841] [0.735,0.897]

5 DM [0.688,0.833] [0.647,0.808] [0.668,0.834] [0.662,0.794] [0.649,0.83] [0.656,0.781]

PDA [0.684,0.849] [0.692,0.828] [0.661,0.802] [0.734,0.905] [0.648,0.772] [0.707,0.863]

6 DM [0.75,0.936] [0.661,0.842] [0.696,0.794] [0.618,0.787] [0.713,0.787] [0.705,0.818]

PDA [0.669,0.796] [0.723,0.889] [0.706,0.843] [0.667,0.799] [0.707,0.854] [0.633,0.746]

7 DM [0.655,0.758] [0.709,0.911] [0.747,0.854] [0.639,0.782] [0.713,0.877] [0.76,0.838]

PDA [0.652,0.774] [0.706,0.868] [0.644,0.757] [0.705,0.859] [0.737,0.904] [0.727,0.893]

8 DM [0.674,0.775] [0.731,0.866] [0.61,0.771] [0.746,0.832] [0.714,0.829] [0.689,0.858]

PDA [0.689,0.815] [0.73,0.907] [0.715,0.866] [0.733,0.899] [0.715,0.874] [0.654,0.784]

9 DM [0.617,0.736] [0.626,0.778] [0.685,0.771] [0.673,0.812] [0.725,0.817] [0.707,0.853]

PDA [0.637,0.757] [0.685,0.82] [0.728,0.862] [0.693,0.829] [0.646,0.771] [0.648,0.77]

10 DM [0.622,0.724] [0.725,0.867] [0.64,0.813] [0.713,0.897] [0.654,0.75] [0.616,0.689]

PDA [0.622,0.742] [0.674,0.811] [0.696,0.833] [0.679,0.816] [0.719,0.877] [0.644,0.763]



Appendix B

Benchmarks used in this thesis

Table B.1: Characteristics of the benchmarks used

Benchmark Characteristics Thesis pages

Dow Jones Industrial Average in-

dex (DJIA)

Commonly used financial benchmark. 33, 76, 81, 127

Mean-variance model with bounds

on individual stocks constraint

(MV)

Refinement of the classical approach in

Modern Portfolio Theory

13, 80, 127

Dataset from recent literature

benchmark (RB)

Results provided by Ref. [124]. Its dataset

is a subset of the one used in this thesis.

80 - 81

MOEA/D Most mentioned MOEA based on decom-

position of the literature

53, 119

xxxv
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Table B.2: Procedures used to assess the proposed approach’s effectiveness

Procedure Benchmarks Description Pages

Assessing the uncertainty

management proposal

DJIA, MV and

RB

Estimates the approach’s ability to

consider the investor’s attitude in pres-

ence of risk. It consists in using confi-

dence intervals as criteria underlying

the maximization of portfolio return, a

risky objective.

72-86

Assessing the proposed elic-

itation model in the context

of preference relations

Evaluates the approach’s effectiveness

to reproduce the investor’s preferences

by comparing binary relations inferred

from his/her holistic decisions and the

ones inferred from the decision models

built by the approach.

97-101

Assessing the proposed elic-

itation model in the context

of ordinal classification

Evaluates the approach’s effectiveness

to reproduce the investor’s decisions

by comparing the investor’s and the

approach’s assignments of portfolios

to ordered categories

101-102

Assessing the general per-

formance of the approach

and the satisfaction of the

investor in presence of

many criteria

DJIA, MV and

MOEA/D

All the previous characteristics are

taken into consideration to address the

Portfolio Optimization Problem when

the investor is interested inmany crite-

ria. The approach’s performance is as-

sessed in function of the impact on the

underlying criteria and the maximiza-

tion of the portfolio return. The in-

vestor’s satisfaction is obtained as the

proportion of coincidences between

the approach’s recommendations and

the investor’s holistic decisions.

129-130
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